Skip to main content
Log in

Single Nucleotide Polymorphisms in hsp65 and MACPPE12 Genes of Mycobacterium avium subsp. hominissuis

  • GENETICS OF MICROORGANISMS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Mycobacterium avium subsp. hominissuis (MAH) are typical inhabitants of the environment, which are known as opportunistic pathogens of animals and humans. The aim of our study was to analyze single-nucleotide polymorphisms (SNPs) in the hsp65 and MACPPE12 genes to characterize the Russian population of MAH in the context of studying phylogenetic relationships and the evolution of geographically distant populations of M. avium subsp. hominissuis. The sequence analysis of the hsp65 and MACPPE12 genes was applied for 40 MAH strains isolated from humans (patients with mycobacteriosis). The nucleotide sequences were aligned to the reference genome of M. avium subsp. hominissuis 104 (accession no. NC_008595.1). The mutational profiles of Russian strains were compared with those isolated in other countries. In total, 40 MAH strains were classified into three different hsp65 sequevars: code 1, code 2, and code 3. The majority of MAH strains (72.5%) belonged to code 1, the same sequevar as for MAH strain 104. The sequence analysis of the MACPPE12 gene revealed 20 SNPs grouped into nine sequevars at the nucleic acid level: NA01, NA02, NA03, NA06, NA10, NA13, NA14, NA19, and NA_Rus01. Eight out of 20 SNPs were nonsynonymous, resulting in seven sequevars at the amino acid level: AA01, AA02, AA04, AA07, AA08, AA13, and AA_Rus01. The sequevar AA02 consisted of three different NA variants with synonymous SNPs profiles: NA02, NA03, and NA06. Half of the MAH strains belonged to the sequevar AA02 (type NA02). The predominant cluster AA02 (type NA02)/code 1 and the unique variant AA_Rus01 (NA_Rus01) were identified among MAH strains from Russia. Thus, we confirmed the relative conservativeness of the nucleotide sequence of the hsp65 gene but the polymorphism of the MACPPE12 gene. At the same time, a comparative analysis of the SNPs profiles of the hsp65 and MACPPE12 genes allowed us to identify differences and similarities between geographically distant populations of MAH, which highlighted the variability of the global population of M. avium species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Otten, T.F. and Vasil’ev, A.V., Mikobakterioz (Mycobacteriosis), St. Petersburg: Meditsinskaya Pressa, 2005.

    Google Scholar 

  2. Levy-Frebault, V.V. and Portaels, F., Proposed minimal standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium species, Int. J. Syst. Bacteriol., 1992, vol. 42, pp. 315—323.

    Article  CAS  PubMed  Google Scholar 

  3. Shinnick, T.M. and Good, R.C., Mycobacterial taxonomy, Eur. J. Clin. Mycrobiol. Infect. Dis., 1994, vol. 13, no. 11, pp. 884—901.

    Article  CAS  Google Scholar 

  4. Iwamoto, T., Nakajima, C., Nishiuchi, Y., et al., Genetic diversity of Mycobacterium avium subsp. hominissuis strains isolated from humans, pigs, and human living environment, Infect. Genet. Evol., 2012, vol. 12, no. 4, pp. 846—852.

    Article  PubMed  Google Scholar 

  5. Falkinham, III J.O., Nontuberculous mycobacteria in the environment, Clin. Chest Med., 2002, vol. 23, no. 3, pp. 529—551.

    Article  PubMed  Google Scholar 

  6. Turenne, C.Y., Wallace, R., and Behr, M.A., Mycobacterium avium in the postgenomic era, Clin. Microb. Rev., 2007, vol. 20, no. 2, pp. 205—229.

    Article  CAS  Google Scholar 

  7. Rindi, L. and Garzelli, C., Genetic diversity and phylogeny of Mycobacterium avium, Infect. Genet. Evol., 2014, vol. 21, no. 4, pp. 375—383.

    Article  PubMed  Google Scholar 

  8. Chimara, E., Ferrazoli, L., Ueky, S.Y.M., et al., Reliable identification of mycobacterial species by PCR-restriction enzyme analysis (PRA)-hsp65 in a reference laboratory and elaboration of a sequence-based extended algorithm of PRA-hsp65 patterns, BMC Microbiol., 2008, vol. 8, no. 48. https://doi.org/10.1186/1471-2180-8-48

  9. McNabb, A., Eisler, D., Adie, K., et al., Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources, J. Clin. Microbiol., 2004, vol. 42, no. 7, pp. 3000—3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Telenti, A., Marchesi, F., Balz, M., et al., Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis, J. Clin. Microbiol., 1993, vol. 31, no. 2, pp. 175—178.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sampson, S.L., Mycobacterial PE/PPE proteins at the host—pathogen interface, Clin. Dev. Immunol., 2011. https://doi.org/10.1155/2011/497203

  12. Mackenzie, N., Alexander, D.C., Turenne, C.Y., et al., Genomic comparison of PE and PPE genes in the Mycobacterium avium complex, J. Clin. Microbiol., 2009, vol. 47, pp. 1002—1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iwamoto, T., Arikawa, K., Nakajima, C., et al., Intra-subspecies sequence variability of the MACPPE12 gene in Mycobacterium avium subsp. hominissuis, Genet. Evol., 2014, vol. 21, pp. 479—483.

    Article  CAS  Google Scholar 

  14. Starkova, D.A., Otten, T.F., Mokrousov, I.V., et al., Genotypic characteristics of Mycobacterium avium subsp. hominissuis strains, Russ. J. Genet., 2013, vol. 49, no. 9, pp. 909—914. https://doi.org/10.1134/S1022795413090093

    Article  CAS  Google Scholar 

  15. Starkova, D.A., Mokrousov, I.V., Vyazovaya, A.A., et al., Genome polymorphism of Mycobacterium avium subsp. hominissuis strains, Mol. Genet., Microbiol. Virol., 2014, vol. 29, no. 4, pp. 172—178.

    Article  Google Scholar 

  16. Van Embden, J.D., Cave, M.D., Crawford, J.T., et al., Strain identification on Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology, J. Clin. Microbiol., 1993, vol. 31, no. 2, pp. 406—409.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bartos, M., Hlozek, P., Svastova, P., et al., Identification of members of Mycobacterium avium species by Accu-Probes, serotyping, and single IS900, IS901, IS1245 and IS901-flanking region PCR with internal standards, J. Microbiol. Methods, 2006, vol. 64, no. 3, pp. 333—345.

    Article  CAS  PubMed  Google Scholar 

  18. Inagaki, T., Nishimori, K., Yagi, T., et al., Comparison of a Variable-Number Tandem-Repeat (VNTR) method for typing Mycobacterium avium with Mycobacterial Interspersed Repetitive-Unit—VNTR and IS1245 restriction fragment length polymorphism typing, J. Clin. Microbiol., 2009, vol. 47, no. 7, pp. 2156—2164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thibault, V.C., Grayon, M., Boschiroli, M., et al., New Variable-Number Tandem-Repeat markers for typing Mycobacterium avium subsp. paratuberculosis and M. avium strains: comparison with IS900 and IS1245 restriction fragment length polymorphism typing, J. Clin. Microbiol., 2007, vol. 45, no. 8, pp. 2404—2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Turenne, C.Y., Semret, M., Cousins, D.V., et al., Sequencing of hsp65 distinguishes among subsets of the Mycobacterium avium complex, J. Clin. Microbiol., 2006, vol. 44, no. 2, pp. 433—440. https://doi.org/10.1128/JCM.44.2.433-440.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, S.-Y., Jeong, B.-H., Park, H.Y., et al., Association of ISMav6 with the pattern of antibiotic resistance in Korean Mycobacterium avium clinical isolates but no relevance between their genotypes and clinical features, PLoS One, 2016, vol. 11, no. 2. https://doi.org/10.1371/journal.pone.0148917

  22. Scherrer, S., Landolt, P., Carroli, N., and Stephan, R., Molecular characterization of Mycobacterium avium subsp. hominissuis of two groups of lymph nodes, being intradermal tuberculin or interferon-gamma test positive and negative, isolated from Swiss cattle at slaughter, Front. Vet. Sci., 2018, vol. 5, no. 32. https://doi.org/10.3389/fvets.2018.00032

  23. Vluggen, C., Soetaert, K., Duytschaever, L., et al., Genotyping and strain distribution of Mycobacterium avium subspecies hominissuis isolated from humans and pigs in Belgium, 2011—2013, Euro Surveill., 2016, vol. 21, no. 3. http://dx.doi.org/10.2807/1560 7917.ES.2016.21.3.30111.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Starkova.

Additional information

Devoted to the memory of Tatiana Ferdinandovna Otten, Dr. Sci. (Biology), TB specialist

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starkova, D.A., Iwamoto, T., Vyazovaya, A.A. et al. Single Nucleotide Polymorphisms in hsp65 and MACPPE12 Genes of Mycobacterium avium subsp. hominissuis. Russ J Genet 55, 544–550 (2019). https://doi.org/10.1134/S1022795419050120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419050120

Keywords:

Navigation