Skip to main content
Log in

High Allelic Diversity of the DRB3 Gene (MHC Class II) in Saiga (Saiga tatarica) L., 1766), Obtained by Next Generation Sequencing Method

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The nucleotide sequences of the alleles of the DRB3 gene of the major histocompatibility complex (class II) of saiga antelope are described. A high degree of heterozygosity is found. The results of the analysis are consistent with the hypothesis of overdominance of heterozygotes. Phylogenetic relations of the DRB3 gene alleles of the saiga antelope and other Bovidae species do not correspond to the systematic position of Saiga tatarica. It is assumed that the polymorphism of the DRB3 gene alleles of saiga is primarily due to the variety of extracellular pathogens (bacteria, protozoa, helminths, and others) affecting its population during the evolutionary history of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Soulé, M.E., Viable Populations for Conservation, Cambridge: Cambridge Univ. Press, 1987. https://doi.org/10.1017/CBO9780511623400

    Book  Google Scholar 

  2. Luikart, G., Sherwin, W.B., Steele, B.M., and Allendorf, F.W., Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change, Mol. Ecol., 1998, no. 7, pp. 963—974. https://doi.org/10.1046/j.1365-294x.1998.00414.x

  3. Frankham, R., Ecosystem recovery enhanced by genotypic diversity, Heredity, 2005, vol. 95, p. 183. https://doi.org/10.1038/sj.hdy.6800706

    Article  CAS  PubMed  Google Scholar 

  4. Fox, C.W. and Reed, D.H., Inbreeding depression increases with environmental stress: an experimental study and meta-analysis, Evolution, 2011, vol. 65, no. 1, pp. 246—258. https://doi.org/10.1111/j.1558-5646.2010.01108.x

    Article  PubMed  Google Scholar 

  5. Willi, Y., Van Buskirk, J., and Hoffmann, A.A., Limits to the adaptive potential of small populations, Annu. Rev. Ecol. Evol. Syst., 2006, vol. 37, pp. 433−458. https://doi.org/10.1146/annurev.ecolsys.37.091305.110145

    Article  Google Scholar 

  6. Bensaid, A., Young, J.R., Kaushal, A., and Teale, A.J., Pulsed-field gel electrophoresis and its application in the physical analysis of the bovine MHC, Gene Mapping Techniques 122 and Applications, McLaren, Ed., New York: Marcel Dekker, 1991, p. 127.

  7. Fries, R., Aggen, A., and Womack, J.E., The bovine genome map, Mamm. Genome, 1993, vol. 4, pp. 405—428.

    Article  CAS  PubMed  Google Scholar 

  8. Behl, J.D., Verma, N.K., Tyagi, N., et al., The major histocompatibility complex in Bovines: a review, ISRN Vet. Sci., 2012, рр. 1–12. https://doi.org/10.5402/2012/872710

  9. Paracha, H., Hussain, T., Tahir, M.Z., et al., Multifunctional DRB3, a MHC class II gene, as a useful biomarker in small ruminants: a review, J. Inf. Mol. Biol., 2015, vol. 3, no. 1, pp. 19—23. https://doi.org/10.14737/journal.jimb/2015/3.1.19.23

    Article  Google Scholar 

  10. Subramani, K.V., Sankar, M., Raghunatha, R.R., et al., Association of genetic resistance to gastrointestinal nematodes and the polymorphism at CAHI-DQA1 exon 2, Int. J. Sci. Environ. Technol., 2016, vol. 5, no. 2, pp. 678—687.

    Google Scholar 

  11. Tarasyan, K.K., Sorokin, P.A., Kholodova, M.V., and Rozhnov, V.V., Major histocompatibility complex (MHC) in mammals and its importance for studies of rare species (with Felidae family as an example), Zh. Obshch. Biol., 2014, vol. 75, no. 4, pp. 302—314.

    Google Scholar 

  12. Kumar, S., Sangwan, M.L., Ahlawat, S., and Barwar, A., Polymorphism in DRB3 exon 2 by PCR-RFLP and its association with mastitis in Murrah baffaloes, Ind. J. Biotech., 2011, vol. 10, pp. 232—234.

    CAS  Google Scholar 

  13. Sommer, S., The importance of immune gene variability (MHC) in evolutionary ecology and conservation, Front. Zool., 2005, vol. 2, no. 16, pp. 1—18. https://doi.org/10.1186/1742-9994-2-16

    Article  CAS  Google Scholar 

  14. Neronov, V.M., Karimova, T.Yu., and Lushchekina, A.A., Ecosystem approach and GAP analysis of the saiga population state in the North-West Pre-Caspian Region, Astrakh. Vestn. Ekol. Obraz., 2011, no. 2(18), pp. 151−157.

  15. Neronov, V.M., Arylova, N.Yu., Dubinin, M.Yu., et al., Current state and prospects of preserving saiga antelope in Northwest Pre-Caspian region, Arid. Ecosyst., 2013, vol. 3, no. 2, pp. 57−64. https://doi.org/10.1134/S2079096113020078

    Article  Google Scholar 

  16. Neronov, V.M., Lushchekina, A.A., Karimova, T.Y., and Arylova, N.Y., Population dynamics of a key steppe species in a changing world: the critically endangered saiga antelope, Eurasian Steppes: Ecological Problems and Livelihoods in a Changing World in Plant and Vegetation, no. 6, Werger M.J.A. and van Staalduinen M.A., Eds., Dordrecht: Springer-Verlag, 2012, chapter 12, pp. 335—357. https://doi.org/10.1007/978-94-007-3886-7_12

  17. Soulé, M.E., Threshold for survival: maintaining fitness and evolutionary potential, in Conservation Biology: An Evolutionary-Ecologial Perspective, Soulé, M.E. and Wilcox, B.A., Eds., Sunderland: Sinauer, 1980, pp. 151—169.

    Google Scholar 

  18. Lynch, M. and Lande, R., The critical effective size for a genetically secure population, Anim. Conserv., 1998, vol. 1, pp. 70—72. https://doi.org/10.1111/j.1469-1795.1998.tb00229.x

    Article  Google Scholar 

  19. Frankham, R., Bradshaw, C.J., and Brook, B.W., Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses, Biol. Conserv., 2014, vol. 170, pp. 56—63. https://doi.org/10.1016/j.biocon.2013.12.036

    Article  Google Scholar 

  20. Frankham, R., Bradshaw, C.J., and Brook, B.W., 50/500 rules need upward revision to 100/1000—response to Franklin et al., Biol. Conserv., 2014, vol. 176, p. 286. https://doi.org/10.1016/j.biocon.2014.05.006

    Article  Google Scholar 

  21. Bannikov, A.G., Zhirnov, L.V., Lebedeva, L.S., and Fandeev, A.A., Biologiya saigaka (Biology of Saiga Antelope), Moscow: Izd. S-kh. Lit., Zh., Plakatov, 1961.

  22. Baryshnikov, G.F., Dmitrieva, E.L., Krakhmal’naya, T.V., and Sher, A.V., The origin, evolution, and systematics of saiga antelope, in Saigak: filogeniya, sistematika, ekologiya, okhrana i ispol’zovanie (Saiga Antelope: Phylogeny, Systematics, Ecology, Conservation, and Use), Sokolov, V.E. and Zhirnov, L.V., Eds., Moscow, 1998, pp. 9−20.

    Google Scholar 

  23. Campos, P.F., Kristensen, T., Orlando, L., et al., Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene, Mol. Ecol., 2010, vol. 19, no. 22, pp. 4863—4875. https://doi.org/10.1111/j.1365-294X.2010.04826.x

    Article  CAS  PubMed  Google Scholar 

  24. Baitursinov, K.K., Saiga antelope helminths in Kazakhstan, Vestn. Pedagog. Gos. Univ. im. S. Toraigyrova, Ser. Khim.—Biol., 2005, no. 2, pp. 67—81.

  25. Baitursinov, K.K., Brief data on the biology and helminth infestation of saiga antelope (Saiga tatarica L., 1766) in Kazakhstan, Vestn. Kaz. Natl. Univ., Ser. Biol., 2009, no. 3(42), pp. 83—87.

  26. Petrov, V.S., Saiga antelope helminths and their significance in epizootology by sheep worms, Extended Abstract of Cand. Sci. Dissertation, Moscow: Vsesoyuz. Inst. Gig. Sanit., 1985.

  27. Grachev, Yu.A. and Bekenov, A.B., Mass death of saiga antelopes—about 12 thousand deaths, Saiga News, 2010, no. 11, pp. 2—3.

  28. Sigurdardottir, S., Borsch, C., Gustafsson, K., and Andersson, L., Cloning and sequence analysis of 14 DBR alleles of the bovine major histocompatibility complex using the polymerase chain reaction, Anim. Genet., 1991, vol. 22, pp. 199—209.

    Article  CAS  PubMed  Google Scholar 

  29. Mikko, S., Roed, K., Schmutz, S., and Andersson, L., Monomorphism and polymorphism at MHC DRB loci in domestic and wild ruminants, Immunol. Rev., 1999, vol. 167, pp. 169—178. https://doi.org/10.1111/j.1600-065X.1999.tb01390.x

    Article  CAS  PubMed  Google Scholar 

  30. Kennedy, L.J., Modrell, A., Groves, P., et al., Genetic diversity of the major histocompatibility complex class II in Alaskan caribou herds, Int. J. Immunogenet., 2010, vol. 38, pp. 109—119. https://doi.org/10.1111/j.1744-313X.2010.00973.x

    Article  CAS  PubMed  Google Scholar 

  31. Taylor, S.S., Jenkins, D.A., and Arcese, P., Loss of MHC and neutral variation in Peary caribou: genetic drift is not mitigated by balancing selection or exacerbated by MHC allele distributions, PLoS One, 2012, vol. 7, no. 5, pp. 1—11. https://doi.org/10.1371/journal.pone.0036748

    Article  CAS  Google Scholar 

  32. Villesen, P., FaBox: an online toolbox for fasta sequences, Mol. Ecol. Notes, 2007, vol. 7, no. 6, pp. 965—968. https://doi.org/10.1111/j.1471-8286.2007.01821.x

    Article  CAS  Google Scholar 

  33. Excoffier, L. and Lischer, H.E.L., Arlequin Suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, pp. 564—567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  34. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725—2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bandelt, H.J., Forster, P., and Rohl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37—48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  36. Doherty, P.C. and Zinkernagel, R.M., A biological role for the major histocompatibility antigens, Lancet, 1975, vol. 1, no. 7922, pp. 1406—1409.

    Article  CAS  PubMed  Google Scholar 

  37. Takahata, N. and Nei, M., Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci, Genetics, 1990, vol. 124, no. 4, pp. 967—978.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wakeland, E.K., Boehme, S., She, J.X., et al., Ancestral polymorphisms of MHC class II genes: divergent allele advantage, Immunol. Res., 1990, vol. 9, no. 2, pp. 115—122. https://doi.org/10.1007/BF02918202

    Article  CAS  PubMed  Google Scholar 

  39. Barmann, E.V., Rossner, G.E., and Worheide, G., A revised phylogeny of Antilopini (Bovidae, Artiodactyla) using combined mitochondrial and nuclear genes, Mol. Phylogenet. Evol., 2013, vol. 67, pp. 484−493. https://doi.org/10.1016/j.ympev.2013.02.015

    Article  PubMed  Google Scholar 

  40. Khademi, T.G., Evaluation of phylogenetic relationships of Antilopini and Oreotragini tribes (Bovidae: Artiodactyla) based on complete mitochondrial genomes, J. Wildlife Biodiv., 2017, vol. 1, no. 1, pp. 1—11. https://doi.org/10.22120/JWB.2017

    Article  Google Scholar 

  41. Bekenov, A.B., Pole, S.B., Pole, S.B., et al., Saiga death from diseases and parasitic invasions, in Saigak: filogeniya, sistematika, ekologiya, okhrana i ispol’zovanie (Saiga: Phylogeny, Systematics, Ecology, Conservation, and Use), Sokolov, V.E. and Zhirnov, L.V., Eds., Moscow, 1998, pp. 247—251.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.V. Davydov for assistance in organizing the sample collection; N.V. Koroban, an expert in the products of Roche Diagnostics Russia; and A.V. Kudryavtseva, head of the Center of Collective Use “Genome” of the Institute of Molecular Biology (Russian Academy of Sciences), for their help in performing the sequencing, as well as G.A. Bazykin, head of the sector of molecular evolution of Institute for Information Transmission Problems (Russian Academy of Sciences), for consultations on data processing.

This work was supported by the Russian Foundation for Basic Research, project no. 17-04-01351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Sorokin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasyan, K.K., Sorokin, P.A., Kashinina, N.V. et al. High Allelic Diversity of the DRB3 Gene (MHC Class II) in Saiga (Saiga tatarica) L., 1766), Obtained by Next Generation Sequencing Method. Russ J Genet 55, 212–219 (2019). https://doi.org/10.1134/S1022795419020133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419020133

Keywords:

Navigation