Skip to main content
Log in

The New Role of СysB Transcription Factor in Cysteine Degradation and Production of Hydrogen Sulfide in E. coli

  • GENETICS OF MICROORGANISMS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The paradoxical effect of deletion of the Escherichia coli genes cysK and cysM encoding cysteine synthase enzymes has been studied: such cysteine auxotrophs actively degrade the excess of cysteine transported from the medium to form H2S. We have shown that deletions of any of the known genes controlling the degradation of exogenous cysteine, including the genes aspC, mstA, cysK, cysM, tnaA, metC, and malY, as well as the newly discovered genes yciW, cyuA, cyuP, and cyuR, do not deprive the cysteine auxotrophs ΔcysK ΔcysM of the ability to degrade cysteine. Cysteine degradation in the ΔcysK ΔcysM mutant is positively regulated by the products of the cysB and cysE genes. It is significant that the ΔcysK ΔcysM mutant shows an increased transcription of the genes opposing the oxidative stress (sodA, catG, arcA, and cydD). We assume that oxidative stress in cells of the ΔcysK ΔcysM mutant is provoked by restriction of cysteine resynthesis, while cysB-dependent degradation of exogenous cysteine and generated H2S provide protection against oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Shatalin, K., Shatalina, E., Mironov, A., and Nudler, E., H2S: a universal defense against antibiotics in bacteria, Science, 2011, vol. 334, pp. 986-990.

    Article  PubMed  CAS  Google Scholar 

  2. Mironov, A., Seregina, T., Nagornykh, M., et al., A mechanism of H2S-mediated protection against oxidative stress in E. coli, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, pp. 6022-6027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kredich, N.M. and Tomkins, G.M., The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium, J. Biol. Chem., 1966, vol. 241, pp. 4955-4965.

    PubMed  CAS  Google Scholar 

  4. Awano, N., Wada, M., Mori, H., et al., Identification and functional analysis of Escherichia coli cysteine desulfhydrases, Appl. Environ. Microbiol., 2005, vol. 71, pp. 4149-4152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kawano, Y., Ohtsu, I., Takumi, K., et al., Enhancement of L-cysteine production by disruption of yciW in Escherichia coli, J. Biosci. Bioeng., 2015, vol. 119, pp. 176-179.

    Article  PubMed  CAS  Google Scholar 

  6. Kawano, Y., Ohtsu, I., Tamakoshi, A., et al., Involvement of the yciW gene in l-cysteine and l-methionine metabolism in Escherichia coli, J. Biosci. Bioeng., 2015, vol. 119, pp. 310-313.

    Article  PubMed  CAS  Google Scholar 

  7. Shimada, T., Tanaka, K., and Ishihama, A., Transcription factor DecR (YbaO) controls detoxification of L‑cysteine in Escherichia coli, Microbiology, 2016, vol. 162, pp. 1698-1707.

    Article  PubMed  CAS  Google Scholar 

  8. Nonaka, G. and Takumi, K., Cysteine degradation gene yhaM, encoding cysteine desulfidase, serves as a genetic engineering target to improve cysteine production in Escherichia coli, AMB Exp., 2017, vol. 7, p. 90.

    Article  CAS  Google Scholar 

  9. Loddeke, M., Schneider, B., Oguri, T., et al., Anaerobic cysteine degradation and potential metabolic coordination in Salmonella enterica and Escherichia coli, J. Bacteriol., 2018, vol. 199. e00117-17

    Google Scholar 

  10. Baba, T., Ara, T., Hasegawa, M., et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol., 2006, vol. 2, pp. 2006-2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor: Cold Spring Harbor Lab., 1972.

    Google Scholar 

  12. Colnaghi, R., Cassinelli, G., Drummond, M., et al., Properties of the Escherichia coli rhodanese-like protein SseA: contribution of the active-site residue Ser240 to sulfur donor recognition, FEBS Lett., 2001, vol. 500, pp. 153-156.

    Article  PubMed  CAS  Google Scholar 

  13. Gelfand, D.H. and Steinberg, R.A., Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases, J. Bacteriol., 1977, vol. 130, pp. 429-440.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Kredich, N.M., The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli, Mol. Microbiol., 1992, vol. 6, pp. 2747-2753.

    Article  PubMed  CAS  Google Scholar 

  15. Ostrowski, J. and Kredich, N.M., Molecular characterization of the cysJIH promoters of Salmonella typhimurium and Escherichia coli: regulation by cysB protein and N-acetyl-L-serine, J. Bacteriol., 1989, vol. 171, pp. 130-140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ohtsu, I., Wiriyathanawudhiwong, N., Morigasaki, S., et al., The L-cysteine/L-cystine shuttle system provides reducing equivalents to the periplasm in Escherichia coli, J. Biol. Chem., 2010, vol. 285, pp. 17479-17487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ohtsu, I., Kawano, Y., Suzuki, M., et al., Uptake of L‑cystine via an ABC transporter contributes defense of oxidative stress in the L-cystine export-dependent manner in Escherichia coli, PLoS One, 2015, vol. 10. e0120619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Imlay, K.R., Korshunov, S., and Imlay, J.A., Physiological roles and adverse effects of the two cystine importers of Escherichia coli, J. Bacteriol., 2015, vol. 197, pp. 3629-3644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Walkup, L.K.B. and Kogoma, T., Escherichia coli proteins inducible by oxidative stress mediated by the superoxide radical, J. Bacteriol., 1989, vol. 171, pp. 1476-1484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Pomposiello, P.J., Bennik, M.H., and Demple, B., Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate, J. Bacteriol., 2001, vol. 183, pp. 3890-3902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Christman, M.F., Storz, G., and Ames, B.N., OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, pp. 3484-3488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rolfe, M.D., Beek, T.A., Graham, A.I., et al., Transcript profiling and inference of Escherichia coli K-12 ArcA activity across the range of physiologically relevant oxygen concentrations, J. Biol. Chem., 2011, vol. 286, pp. 10147-10154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Park, D.M., Akhtar, M.S., Ansari, A.Z., et al., The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally, PLoS Genet., 2013, vol. 9. e1003839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Delaney, J.M., Wall, D., and Georgopoulos, C., Molecular characterization of the Escherichia coli htrD gene: cloning, sequence, regulation, and involvement with cytochrome d oxidase, J. Bacteriol., 1993, vol. 175, pp. 166-175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Cook, G.M., Membrillo-Hernandes, J., and Poole, R.K., Transcriptional regulation of the cydDC operon, encoding a heterodimeric ABC transporter required for assembly of cytochromes c and bd in Escherichia coli K-12: regulation by oxygen and alternative electron acceptors, J. Bacteriol., 1997, vol. 179, pp. 6525-6530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Frávega, J., Álvarez, R., Díaz, F., et al., Salmonella typhimurium exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H2S in a CysK-dependent manner, J. Antimicrob. Chemother., 2016, vol. 71, pp. 3409-3415.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.A. Nudler for valuable comments in discussing the results of this work.

The results of the studies presented in Figs. 2 and 3 were obtained in the framework of the Program of Fundamental Research of the State Academies of Sciences for 2013–2020 (topic no. 01201363822). The results of the studies presented in Figs. 4–8 were obtained using funds of the Russian Science Foundation (project no. 17-74-30030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mironov.

Additional information

Translated by K. Lazarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seregina, T.A., Nagornykh, M.O., Lobanov, K.V. et al. The New Role of СysB Transcription Factor in Cysteine Degradation and Production of Hydrogen Sulfide in E. coli. Russ J Genet 54, 1259–1265 (2018). https://doi.org/10.1134/S1022795418110145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418110145

Keywords:

Navigation