Skip to main content
Log in

Genomic Islands in Sinorhizobium meliloti Rm1021, Nitrogen-Fixing Symbiont of Alfalfa

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In silico analysis of open reading frames of genomic islands of Sinorhizobium meliloti Rm1021 was performed. This strain is a typical representative of soil bacteria forming nitrogen-fixing symbiosis with legume host plants from the alfalfa cross-inoculation group. It was demonstrated that genomic islands had mosaic structure, in which blocks of functional genes, IS-elements and noncoding RNA alternated. Genomic islands contained as well the components of T4SS and T4CP systems, and lacked systems of conjugative mobilization of islands. It was concluded that two of the three islands could be the variants of reduced integrative conjugative elements, and the third island represented a reduced integrated conjugative transposon. Site-specific integration of islands occurred into a 15–31 bp sequence (depending on the island) localized at the 3′-end of the tRNA gene, which is then shifted rightward, while the remaining part of the tRNA gene is completed by a similar sequence that exists in the island. A suggestion on the existence of “speciesspecific insertion hotspots” for genomic islands of root nodule bacteria was put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sullivan, J.T., Trzebiatowski, J.R., Cruickshank, R.W., et al., Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A, J. Bacteriol., 2002, vol. 184, no. 11, pp. 3086–3095. doi 10.1128/JB.184.11.3086-3095.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kaneko, T., Nakamura, Y., Sato, S., et al., Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110, DNA Res., 2002, vol. 9, no. 6, pp. 189–197. doi 10.1093/dnares/9.6.189

    Article  PubMed  Google Scholar 

  3. Leimbach, A., Hacker, J., and Dobrindt, U., E. coli as an all-rounder: the thin line between commensalism and pathogenicity, Curr. Top. Microbiol. Immunol., 2013, vol. 358, pp. 3–32. doi 10.1007/82_2012_303

    PubMed  Google Scholar 

  4. Mavingui, P., Flores, M., Guo, X., et al., Dynamics of genome architecture in Rhizobium sp. strain NGR234, J. Bacteriol., 2002, vol. 184, no. 1, pp. 171–176. doi 10.1128/JB.184.1.171–176.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gonzalez, J.M., Gomez-Puertas, P., Cavanagh, D., et al., A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae, Arch. Virol., 2003, vol. 148, no. 11, pp. 2207–2235. doi 10.1007/s00705-003-0162-1

    Article  PubMed  CAS  Google Scholar 

  6. Okubo, T., Piromyou, P., Tittabutr, P., et al., Origin and evolution of nitrogen fixation genes on symbiosis islands and plasmid in Bradyrhizobium, Microbes Environ., 2016, vol. 31, no. 3, pp. 260–267. doi 10.1264/jsme2.ME15159

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barcellos, F.G., Menna, P., Silva Batista, J.S., and Hungria, M., Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian savannah soil, Appl. Environ. Microbiol., 2007, vol. 73, no. 8, pp. 2635–2643. doi 10.1128/AEM.01823-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Sullivan, J.T. and Ronson, C.W., Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, no. 9, pp. 5145–5149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ramsay, J.P., Sullivan, J.T., Stuart, G.S., et al., Excision and transfer of the Mesorhizobium loti R7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS, Mol. Microbiol., 2006, vol. 62, no. 3, pp. 723–734. doi 10.1111/j.1365-2958.2006.05396.x

    Article  PubMed  CAS  Google Scholar 

  10. Haskett, T.L., Ramsa, J.P., Bekuma, A.A., et al., Evolutionary persistence of tripartite integrative and conjugative elements, Plasmid, 2017, vol. 92, pp. 30–36. doi 10.1016/j.plasmid.2017.06.001

    Article  PubMed  CAS  Google Scholar 

  11. Capela, D., Barloy-Hubler, F., Gouzy, J., et al., Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 17, pp. 9877–9882. doi 10.1073/pnas.161294398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sibley, C.D., MacLellan, S.R., and Finan, T., The Sinorhizobium meliloti chromosomal origin of replication, Microbiology, 2006, vol. 152, pp. 443–455. doi 10.1099/mic.0.28455-0

    Article  PubMed  CAS  Google Scholar 

  13. Bellanger, X., Payot, S., Leblon-Bourget, N., and Guedon, G., Conjugative and mobilizable genomic islands in bacteria evolution and diversity, FEMS Microboil. Rev., 2014, vol. 1, no. 42, pp. 1–42. doi 10.1111/1574-6976.12058

    Google Scholar 

  14. Muntyan, V.S., Cherkasova, M.E., Andronov, E.E., et al., Occurrence of “islands” in genomes of Sinorhizobium meliloti native isolates, Russ. J. Genet., 2016, vol. 52, no. 10, pp. 1126–1133. doi 10.1134/S102279541608010X

    Article  CAS  Google Scholar 

  15. Ulve, V.M., Sevin, E.W., Cheron, A., and Barloy-Hubler, F., Identification of chromosomal alpha-proteobacterial small RNAs by comparative genome analysis and detection in Sinorhizobium meliloti strain 1021, BMC Genomics, 2007, vol. 8:467. doi 10.1186/1471-2164-8-467

    Article  PubMed  PubMed Central  Google Scholar 

  16. Barra-Bily, L., Pandey, S.P., Trautwetter, A., et al., The Sinorhizobium meliloti RNA chaperone Hfq mediates symbiosis of S. meliloti and alfalfa, J. Bacteriol., 2010, vol. 192, no. 6, pp. 1710–1718. doi 10.1128/JB.01427-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mahillon, J. and Chandler, M., Insertion sequences, Microbiol. Mol. Biol. Rev., 1998, vol. 62, no. 3, pp. 725–774.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Niemann, S., Puehler, A., Tichy, H.-V., et al., Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population, J. Appl. Microbiol., 1997, vol. 82, no. 4, pp. 477–484. doi 10.1046/j.1365-2672.1997.00141.x

    Article  PubMed  CAS  Google Scholar 

  19. Andronov, E.E., Roumiantseva, M.L., and Simarov, B.V., Genetic diversity of a natural population of Sinorhizobium meliloti revealed in analysis of cryptic plasmids and ISRm2011-2 fingerprints, Russ. J. Genet., 2001, vol. 37, no. 5, pp. 494–499. doi.org/. doi 10.1023/A:1016658429756

    Article  CAS  Google Scholar 

  20. Roumiantseva, M.L., Yakutkina, V.V., Damman-Kalinovski, T., et al., Comparative analysis of structural organization of the genome in alfalfa nodule bacteria Sinorhizobium medicae and S. meliloti, Russ. J. Genet., 1999, vol. 35, no. 2, pp. 178–186.

    Google Scholar 

  21. Vasu, K. and Nagarajaa, V., Diverse functions of restriction-modification systems in addition to cellular defense, Microbiol. Mol. Biol., 2013, vol. 77, no. 1, pp. 53–72. doi 10.1128/MMBR.00044-12

    Article  CAS  Google Scholar 

  22. Ravin, N.V. and Shestakov, S.V., Genome of Prokaryotes, Vavilovskii Zh. Genet. Sel., 2013, vol. 17, no. 4/2, pp. 972–984.

    Google Scholar 

  23. Tatusov, R.L., Galperin, M.Y., Natale, D.A., and Koonin, E.V., Using the COG database to improve gene recognition in complete genomes, Nucleic Acids Res., 2000, vol. 28, no. 1, pp. 33–36. doi 10.1023/A:1004031323748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ferrieres, L., Francez-Charlot, A., Gouzy, J., et al., FixJ-regulated genes evolved through promoter duplication in Sinorhizobium meliloti, Microbiology, 2004, vol. 150, pp. 2335–2345. doi 10.1099/mic.0.27081-0

    Article  PubMed  CAS  Google Scholar 

  25. Bobik, C., Meilhoc, E., and Batut, J., FixJ: a major regulator of the oxygen limitation response and late symbiotic functions of Sinorhizobium meliloti, J. Bacteriol., 2006, vol. 188, no. 13, pp. 4890–4902. doi 10.1128/JB.00251-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Demidenok, O.I. and Goncharenko, A.V., Toxin—antitoxin systems of bacteria and the prospects of their use in medicine (review), Prikl. Biokh. Mikrobiol., 2013, vol. 49, no. 6, pp. 539–546.

    CAS  Google Scholar 

  27. Il’inskaya, O.N. and Shakh Makhmud, R., Ribonucleases as antiviral agents, Mol. Biol. (Moscow), 2014, vol. 48, no. 5, pp. 615–623. doi 10.7868/S0026898414040053

    Article  CAS  Google Scholar 

  28. Cook, G.M., Robson, J.R., Frampton, R.A., et al., Ribonucleases in bacterial toxin—antitoxin systems, Biochim. Biophys. Acta, 2013, vol. 1829, pp. 523–531. doi 10.1016/j.bbagrm.2013.02.007

    Article  PubMed  CAS  Google Scholar 

  29. Cho, J., Vergin, K., Morris, R., and Giovannoni, S., Lentisphaera araneosa gen. nov., sp. nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae, Environ. Microbiol., 2004, vol. 6, no. 6, pp. 611–621. doi 10.1111/j.1462-2920.2004.00614.x

    Article  PubMed  CAS  Google Scholar 

  30. Hug, L.A., Baker, B.J., Anantharaman, K., et al., A new view of the tree of life, Nat. Microbiol., 2016. 1:16048. doi 10.1038/nmicrobiol.2016.48

    Article  PubMed  CAS  Google Scholar 

  31. Shestakov, S.V., How does the horizontal gene transfer in bacteria occur and how it is controlled, Ekol. Genet., 2007, vol. 5, no. 2, pp. 12–24.

    CAS  Google Scholar 

  32. Martinez-Hidalgo, P. and Hirsch, A.M., The nodule microbiome: N2-fixing rhizobia do not live alone, Phytobiomes, 2017, vol. 1, no. 2, pp. 70–82. doi 10.1094/PBIOMES-12-16-0019-RVW

    Article  Google Scholar 

  33. Guo, X., Flores, M., Mavingui, P., et al., Natural genomic design in Sinorhizobium meliloti: novel genomic architectures, Genome Res., 2003, vol. 13, no. 8, pp. 1810–1817.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Roumiantseva.

Additional information

Original Russian Text © M.L. Roumiantseva, V.S. Muntyan, M.E. Cherkasova, A.S. Saksaganskaya, E.E. Andronov, B.V. Simarov, 2018, published in Genetika, 2018, Vol. 54, No. 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roumiantseva, M.L., Muntyan, V.S., Cherkasova, M.E. et al. Genomic Islands in Sinorhizobium meliloti Rm1021, Nitrogen-Fixing Symbiont of Alfalfa. Russ J Genet 54, 759–769 (2018). https://doi.org/10.1134/S102279541807013X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541807013X

Keywords

Navigation