Skip to main content
Log in

Random Priming PCR Strategies for Identification of Multilocus DNA Polymorphism in Eukaryotes

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A historical review of the advent and improvement of the methods for detecting multilocus DNA polymorphism that do not require preliminary knowledge of the individual gene and complete genome sequences of eukaryotes is presented. The first group of these methods includes approaches based on the use of primers with arbitrary sequence (random priming). Another group of methods to detect DNA polymorphism is based on the use of primers that consist of short repetitive sequences having anchor nucleotides at the 5'- or 3'-ends that position the annealing sites of these primers (microsatellite priming). Another approach for revealing polymorphism that does not require knowledge of the DNA sequence is based on cleavage of total DNA by a combination of restriction endonucleases (random cleavage) accompanied by PCR amplification. Considerable attention is paid to the opportunities of using these approaches to detect DNA polymorphism in the form of converting the obtained data to digital format and creation of integrative databases for all organisms, regardless of the methods used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chemeris, D.A., Kir’yanova, O.Yu., Gubaidullin, I.M., and Chemeris, A.V., Design of primers for polymerase chain reaction (brief review of software and databases), Biomika, 2016, vol. 8, pp. 215–238.

    Google Scholar 

  2. Caetano-Anollés, G., Bassam, B.J., and Gresshoff, P.M., DNA fingerprinting: MAAPing out a RAPD redefinition?, Bio/Technology, 1992, vol. 10, no. 2, p. 937. doi 10.1038/nbt0992-937b

    Google Scholar 

  3. Caetano-Anollés, G., MAAP: a versatile and universal tool for genome analysis, Plant Mol. Biol., 1994, vol. 25, pp. 1011–1026.

    Article  PubMed  Google Scholar 

  4. Williams, J.G., Kubelik, A.R., Livak, K.J., et al., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res., 1990, vol. 18, pp. 6531–6535.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gillings, M. and Holley, M., Amplification of anonymous DNA fragments using pairs of long primers generates reproducible DNA fingerprints that are sensitive to genetic variation, Electrophoresis, 1997, vol. 18, pp. 1512–1518.

    Article  PubMed  CAS  Google Scholar 

  6. Wesley, C.S., Ben, M., Kreitman, M., et al., Cloning regions of the Drosophila genome by microdissection of polytene chromosome DNA and PCR with nonspecific primer, Nucleic Acids Res., 1990, vol. 18, pp. 599–603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chapco, W., Theoretical limits on the number of electrophoretic fragments generated by the Random Amplified Polymorphic DNA method, Hereditas, 1995, vol. 122, pp. 179–180.

    Article  Google Scholar 

  8. Welsh, J. and McClelland, M., Fingerprinting genomes using PCR with arbitrary primers, Nucleic Acids Res., 1990, vol. 18, pp. 7213–7218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bulat, S.A. and Mironenko, N.V., Species identity of the phytopathogenic fungi Pyrenophora teres Drechler and P. graminea Ito et Kuribayashi, Mikol. Fitopatol., 1990, vol. 24, pp. 435–440.

    Google Scholar 

  10. Desmarais, E., Lanneluc, I., and Lagnel, J., Direct amplification of length polymorphisms (DALP), or how to get and characterize new genetic markers in many species, Nucleic Acids Res., 1998, vol. 26, pp. 1458–14565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Caetano-Anollés, G., Bassam, B.J., and Gresshoff, P.M., DNA amplification fingerprinting using very short arbitrary oligonucleotide primers, Biotechnology, 1991, vol. 9, pp. 553–557.

    PubMed  Google Scholar 

  12. Caetano-Anollés, G. and Gresshoff, P.M., DNA amplification fingerprinting using arbitrary mini-hairpin oligonucleotide primers, Biotechnology, 1994, vol. 12, pp. 19–23.

    Google Scholar 

  13. Jian, L., Zhang, Y.Z., Yu, D.F., and Zhu, L.Q., Molecular characterization of Cymbidium kanran cultivars based on extended random amplified polymorphic DNA (ERAPD) markers, Afr. J. Biotechnol., 2010, vol. 9, pp. 5084–5089.

    CAS  Google Scholar 

  14. Micheli, M.R., Bova, R., Calissano, P., and D’Ambrosio, E., Randomly amplified polymorphic DNA fingerprinting using combinations of oligonucleotide primers, Biotechniques, 1993, vol. 15, pp. 388–390.

    PubMed  CAS  Google Scholar 

  15. Hu, J., van Eysden, J., and Quiros, C.F., Generation of DNA-based markers in specific genome regions by two-primer RAPD reactions, PCR Methods Appl., 1995, vol. 4, pp. 346–351.

    Article  PubMed  CAS  Google Scholar 

  16. Sall, T., Lind-Hallden, C., and Hallden, C., Primer mixtures in RAPD analysis, Hereditas, 2000, vol. 132, pp. 203–208.

    Article  PubMed  CAS  Google Scholar 

  17. Gatphoh, E.M., Sharma, S.K., Rajkumari, K., and Rama Rao, S., Efficacy of random primer-pair arrays in plant genome analysis: a case study of Cucumis (Cucurbitaceae) for identification of wild and cultivated species, Genet. Mol. Res., 2011, vol. 10, pp. 1416–1426.

    Article  PubMed  CAS  Google Scholar 

  18. Welsh, J. and McClelland, M., Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers, Nucleic Acids Res., 1991, vol. 19, pp. 5275–5279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sakallah, S.A., Lanning, R.W., and Cooper, D.L., DNA fingerprinting of crude bacterial lysates using degenerate RAPD primers, PCR Methods Appl., 1995, vol. 4, pp. 265–268.

    Article  PubMed  CAS  Google Scholar 

  20. Comeau, A.M., Short, S., and Suttle, C.A., The use of degenerate-primed random amplification of polymorphic DNA (DP-RAPD) for strain-typing and inferring the genetic similarity among closely related viruses, J. Virol. Methods, 2004, vol. 118, pp. 95–100.

    Article  PubMed  CAS  Google Scholar 

  21. Li, J.J., Pei, G.L., Pang, H.X., et al., A new method for RAPD primers selection based on primer bias in nucleotide sequence data, J. Biotechnol., 2006, vol. 126, pp. 415–423.

    Article  PubMed  CAS  Google Scholar 

  22. Lorenz, M., Weihe, A., and Borner, T., DNA fragments of organellar origin in random amplified polymorphic DNA (RAPD) patterns of sugar beet (Beta vulgaris L.), Theor. Appl. Genet., 1994, vol. 88, pp. 775–779.

    Article  PubMed  CAS  Google Scholar 

  23. Penner, G.A., Bush, A., Wise, R., et al., Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories, PCR Methods Appl., 1993, vol. 2, pp. 341–345.

    Article  PubMed  CAS  Google Scholar 

  24. Saunders, G.C., Dukes, J., Parkes, H.C., and Cornett, J.H., Interlaboratory study on thermal cycler performance in controlled PCR and random amplified polymorphic DNA analyses, Clin. Chem., 2001, vol. 47, pp. 47–55.

    PubMed  CAS  Google Scholar 

  25. Ramos, J.R., Telles, M.P., Diniz-Filho, J.A., et al., Optimizing reproducibility evaluation for random amplified polymorphic DNA markers, Genet. Mol. Res., 2008, vol. 7, pp. 1384–1391.

    Article  PubMed  CAS  Google Scholar 

  26. Pan, Y.B., Burner, D.M., Ehrlich, K.C., et al., Analysis of primer-derived, nonspecific amplification products in RAPD-PCR, Biotechniques, 1997, vol. 22, pp. 1071–1077.

    Article  PubMed  CAS  Google Scholar 

  27. Caetano-Anollés, G., Amplifying DNA with arbitrary oligonucleotide primers, PCR Methods Appl., 1993, vol. 3, pp. 85–94.

    Article  PubMed  Google Scholar 

  28. Skroch, P. and Nienhuis, J., Impact of scoring error and reproducibility RAPD data on RAPD based estimates of genetic distance, Theor. Appl. Genet., 1995, vol. 91, pp. 1086–1091.

    PubMed  CAS  Google Scholar 

  29. Venugopal, G., Mohapatra, S., Salo, D., and Mohapatra, S., Multiple mismatch annealing: basis for random amplified polymorphic DNA fingerprinting, Biochem. Biophys. Res. Commun., 1993, vol. 197, pp. 1382–1387.

    Article  PubMed  CAS  Google Scholar 

  30. Oakey, H.J., Gibson, L.F., and George, A.M., Comigration of RAPD-PCR amplicons from Aeromonas hydrophila, FEMS Microbiol. Lett., 1998, vol. 164, pp. 35–38.

    Article  PubMed  CAS  Google Scholar 

  31. Valentini, A., Timperio, A.M., Cappuccio, I., and Zolla, L., Random amplified polymorphic DNA (RAPD) interpretation requires a sensitive method for the detection of amplified DNA, Electrophoresis, 1996, vol. 17, pp. 1553–1554.

    Article  PubMed  CAS  Google Scholar 

  32. He, S., Ohm, H., and Mackenzie, S., Detection of DNA sequence polymorphisms among wheat varieties, Theor. Appl. Genet., 1992, vol. 84, pp. 573–578.

    PubMed  CAS  Google Scholar 

  33. McClelland, M., Arensdorf, H., Cheng, R., and Welsh, J., Arbitrarily primed PCR fingerprints resolved on SSCP gels, Nucleic Acids Res., 1994, vol. 22, pp. 1770–1771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Penner, G.A. and Bezte, L.J., Increased detection of polymorphism among randomly amplified wheat DNA fragments using a modified temperature sweep gel electrophoresis (TSGE) technique, Nucleic Acids Res., 1994, vol. 22, pp. 1780–1781.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Penner, G.A., Lee, S.J., Bezte, L.J., and Ugali, E., Rapid RAPD screening of plant DNA using dot blot hybridization, Mol. Breed., 1996, vol. 2, pp. 7–10.

    Article  CAS  Google Scholar 

  36. Grundmann, H., Schneider, C., Tichy, H.V., et al., Automated laser fluorescence analysis of randomly amplified polymorphic DNA: a rapid method for investigating nosocomial transmission of Acinetobacter baumannii, J. Med. Microbiol., 1995, vol. 43, pp. 446–451.

    Article  PubMed  CAS  Google Scholar 

  37. Corley-Smith, G.E., Lim, C.J., Kalmar, G.B., and Brandhorst, B.P., Efficient detection of DNA polymorphisms by fluorescent RAPD analysis, Biotechniques, 1997, vol. 22, pp. 690–699.

    Article  PubMed  CAS  Google Scholar 

  38. Leamon, J.H., Moiseff, A., and Crivello, J.F., Development of a high-throughput process for detection and screening of genetic polymorphisms, Biotechniques, 2000, vol. 28, pp. 994–1005.

    Article  PubMed  CAS  Google Scholar 

  39. Schlipalius, D.I., Waldron, J., Carroll, B.J., et al., A DNA fingerprinting procedure for ultra high-throughput genetic analysis of insects, Insect Mol. Biol., 2001, vol. 10, pp. 579–585.

    Article  PubMed  CAS  Google Scholar 

  40. Waldron, J., Peace, C.P., Searle, I.R., et al., Randomly amplified DNA fingerprinting: a culmination of DNA marker technologies based on arbitrarily-primed PCR amplification, J. Biomed. Biotechnol., 2002, vol. 2, pp. 141–150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chang, A., Liew, W.C., Chuah, A., et al., FluoMEP: a new genotyping method combining the advantages of randomly amplified polymorphic DNA and amplified fragment length polymorphism, Electrophoresis, 2007, vol. 28, pp. 525–534.

    Article  PubMed  CAS  Google Scholar 

  42. Wei, C.L., Cheng, J.L., Khan, M.A., et al., An improved DNA marker technique for genetic characterization using RAMP-PCR with high-GC primers, Genet. Mol. Res., 2016, vol. 15.

  43. Schweder, M.E., Shatters, R.G., West, S.H., and Smith, R.L., Effect of transition interval between melting and annealing temperatures on RAPD analyses, Biotechniques, 1995, vol. 19, pp. 38–42.

    PubMed  CAS  Google Scholar 

  44. Kubelik, A.R. and Szabo, L.J., High-GC primers are useful in RAPD analysis of fungi, Curr. Genet., 1995, vol. 28, pp. 384–389.

    Article  PubMed  CAS  Google Scholar 

  45. Paran, I. and Michelmore, R.W., Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce, Theor. Appl. Genet., 1993, vol. 85, pp. 985–993.

    Article  PubMed  CAS  Google Scholar 

  46. Monna, L., Miyao, A., Inoue, T., et al., Determination of RAPD markers in rice and their conversion into sequence tagged sites (STSs) and STS-specific primers, DNA Res., 1994, vol. 1, pp. 139–148.

    Article  PubMed  CAS  Google Scholar 

  47. Mondon, P., Brenier, M.P., Symoens, F., et al., Molecular typing of Aspergillus fumigatus strains by sequence-specific DNA primer (SSDP) analysis, FEMS Immunol. Med. Microbiol., 1997, vol. 17, pp. 95–102.

    Article  PubMed  CAS  Google Scholar 

  48. Premkrishnan, B.V. and Arunachalam, V., In silico RAPD priming sites in expressed sequences and iSCAR markers for oil palm, Comp. Funct. Genomics, 2012, 913709.

    Google Scholar 

  49. Vos, P., Hogers, R., Bleeker, M., et al., AFLP: a new technique for DNA fingerprinting, Nucleic Acids Res., 1995, vol. 23, pp. 4407–4414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Reineke, A. and Karlovsky, P., Simplified AFLP protocol: replacement of primer labeling by the incorporation of alpha-labeled nucleotides during PCR, Biotechniques, 2000, vol. 28, pp. 622–623.

    Article  PubMed  CAS  Google Scholar 

  51. Chalhoub, B.A., Thibault, S., Laucou, V., et al., Silver staining and recovery of AFLP amplification products on large denaturing polyacrylamide gels, Biotechniques, 1997, vol. 22, pp. 216–220.

    Article  PubMed  CAS  Google Scholar 

  52. Lin, J.J., Ma, J., and Kuo, J., Chemiluminescent detection of AFLP markers, Biotechniques, 1999, vol. 26, pp. 344–348.

    Article  PubMed  CAS  Google Scholar 

  53. Desai, M., Tanna, A., Wall, R., et al., Fluorescent amplified-fragment length polymorphism analysis of an outbreak of group A streptococcal invasive disease, J. Clin. Microbiol., 1998, vol. 36, pp. 3133–3137.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Papa, R., Troggio, M., Ajmone-Marsan, P., and Nonnis Marzano, F., An improved protocol for the production of AFLP markers in complex genomes by means of capillary electrophoresis, J. Anim. Breed. Genet., 2005, vol. 122, pp. 62–68.

    Article  PubMed  CAS  Google Scholar 

  55. Myburg, A.A., Remington, D.L., O’Malley, D.M., et al., High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer, Biotechniques, 2001, vol. 30, pp. 348–357.

    Article  PubMed  CAS  Google Scholar 

  56. Suazo, A. and Hall, H.G., Modification of the AFLP protocol applied to honey bee (Apis mellifera L.) DNA, Biotechniques, 1999, vol. 26, pp. 704–708.

    Article  PubMed  CAS  Google Scholar 

  57. Ranamukhaarachchi, D.G., Kane, M.E., Guy, C.L., and Li, Q.B., Modified AFLP technique for rapid genetic characterization in plants, Biotechniques, 2000, vol. 29, pp. 858–862.

    Article  PubMed  CAS  Google Scholar 

  58. Han, T.H., van Eck, H.J., De Jeu, M.J., and Jacobson, E., Optimization of AFLP fingerprinting of organisms with a large-sized genome: a study on Alstroemeria spp., Theor. Appl. Genet., 1999, vol. 98, pp. 465–471.

    Article  Google Scholar 

  59. Fay, M.F., Cowan, R.S., and Leitch, I.J., The effects of nuclear DNA content (C-value) on the quality and utility of AFLP fingerprints, Ann. Bot., 2005, vol. 95, pp. 237–246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Vesela, P., Volarik, D., and Mracek, J., Optimization of AFLP for extremely large genomes over 70 Gb, Mol. Ecol. Resour., 2016, vol. 16, pp. 933–945.

    Article  PubMed  CAS  Google Scholar 

  61. Guan, L. and Shiraishi, S., Improved AFLP protocol using dual-suppression PCR and its application to species with large genomes, Mol. Ecol. Resour., 2011, vol. 11, pp. 854–861.

    Article  PubMed  Google Scholar 

  62. van Der Wurff, A.W., Chan, Y.L., van Straalen, N.M., and Schouten, J., TE-AFLP: combining rapidity and robustness in DNA fingerprinting, Nucleic Acids Res., 2000, vol. 28. E105

    Article  PubMed Central  Google Scholar 

  63. Lan, R. and Reeves, P.R., Unique adaptor design for AFLP fingerprinting, Biotechniques, 2000, vol. 29, pp. 745–750.

    Article  PubMed  CAS  Google Scholar 

  64. Jones, C.J., Edwards, K.J., Castaglione, S., et al., Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories, Mol. Breed., 1997, vol. 3, pp. 381–390.

    CAS  Google Scholar 

  65. Partis, L., Burns, M., Chiba, K., et al., A study of comparability in amplified fragment length polymorphism profiling using a simple model system, Electrophoresis, 2007, vol. 28, pp. 3193–3200.

    Article  PubMed  CAS  Google Scholar 

  66. Peters, J.L., Constandt, H., Neyt, P., et al., A physical amplified fragment-length polymorphism map of Arabidopsis, Plant Physiol., 2001, vol. 127, pp. 1579–1589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Caballero, A. and Quesada, H., Homoplasy and distribution of AFLP fragments: an analysis in silico of the genome of different species, Mol. Biol. Evol., 2010, vol. 27, pp. 1139–1151.

    Article  PubMed  CAS  Google Scholar 

  68. Caballero, A., Garcia-Pereira, M.J., and Quesada, H., Genomic distribution of AFLP markers relative to gene locations for different eukaryotic species, BMC Genomics, 2013, vol. 14.

  69. Rombauts, S., Van De Peer, Y., and Rouze, P., AFLPinSilico, simulating AFLP fingerprints, Bioinformatics, 2003, vol. 19, pp. 776–777.

    Article  PubMed  CAS  Google Scholar 

  70. Donini, P., Koebner, R.M., Elias, M.L., and Bougourd, S.M., AFLP fingerprinting reveals pattern differences between template DNA extracted from different plant organs, Genome, 1997, vol. 40, pp. 521–526.

    Article  PubMed  CAS  Google Scholar 

  71. Ashikawa, I., Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars, Plant Mol. Biol., 2001, vol. 45, pp. 31–39.

    Article  PubMed  CAS  Google Scholar 

  72. Knox, M.R. and Ellis, T.H., Stability and inheritance of methylation states at PstI sites in Pisum, Mol. Genet. Genomics, 2001, vol. 265, pp. 497–507.

    Article  PubMed  CAS  Google Scholar 

  73. Yamamoto, F., Yamamoto, M., Soto, J.L., et al., NotIMseI methylation-sensitive amplified fragment length polymorphism for DNA methylation analysis of human cancers, Electrophoresis, 2001, vol. 22, pp. 1946–1956.

    Article  PubMed  CAS  Google Scholar 

  74. Yamamoto, F. and Yamamoto, M., A DNA microarray- based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses, Mol. Genet. Genomics, 2004, vol. 271, pp. 678–686.

    Article  PubMed  CAS  Google Scholar 

  75. Kageyama, S., Shinmura, K., Yamamoto, H., et al., Fluorescence-labeled methylation-sensitive amplified fragment length polymorphism (FL-MS-AFLP) analysis for quantitative determination of DNA methylation and demethylation status, Jpn. J. Clin. Oncol., 2008, vol. 38, pp. 317–322.

    Article  PubMed  Google Scholar 

  76. Perez-Figueroa, A., msap: a tool for the statistical analysis of methylation-sensitive amplified polymorphism data, Mol. Ecol. Resour., 2013, vol. 13, pp. 522–527.

    Article  PubMed  CAS  Google Scholar 

  77. Aiba, T., Saito, T., Hayashi, A., et al., Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles, BMC Mol. Biol., 2017, vol. 18.

  78. Meksem, K., Ruben, E., Hyten, D., et al., Conversion of AFLP bands into high-throughput DNA markers, Mol. Genet. Genomics, 2001, vol. 265, pp. 207–214.

    Article  PubMed  CAS  Google Scholar 

  79. Brugmans, B., van der Hulst, R.G., Visser, R.G., et al., A new and versatile method for the successful conversion of AFLP markers into simple single locus markers, Nucleic Acids Res., 2003, vol. 31. e55

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zietkiewicz, E., Rafalski, A., and Labuda, D., Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification, Genomics, 1994, vol. 20, pp. 176–183.

    Article  PubMed  CAS  Google Scholar 

  81. Salimath, S.S., de Oliveira, A.C., Godwin, I.D., and Bennetzen, J.L., Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers, Genome, 1995, vol. 38, pp. 757–763.

    Article  PubMed  CAS  Google Scholar 

  82. Hantula, J., Dusabenyagasani, M., and Hamelin, R.C., Random amplified microsatellites (RAMS)—a novel method for characterizing genetic variation within fungi, Eur. J. For. Path., 1996, vol. 26, pp. 159–166.

    Article  Google Scholar 

  83. Charters, Y.M., Robertson, A., Wilkinson, M.J., and Ramsay, G., PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. oleifera) using 5'-anchored simple sequence repeat (SSR) primers, Theor. Appl. Genet., 1996, vol. 92, pp. 442–447.

    Article  PubMed  CAS  Google Scholar 

  84. Wiesner, I., Wiesnerova, D., and Tejklova, E., Effect of anchor and core sequence in microsatellite primers on flax fingerprinting patterns, J. Agr. Sci. (Cambridge), 2001, vol. 137, pp. 37–44.

    Article  CAS  Google Scholar 

  85. Wiesner, I. and Wiesnerova, D., Insertion of a reamplification round into the ISSR-PCR protocol gives new flax fingerprinting patterns, Cell Mol. Biol. Lett., 2003, vol. 8, pp. 743–748.

    PubMed  CAS  Google Scholar 

  86. Wang, X.L., Yang, R.H., and Yao, Y.J., Development of microsatellite markers for Ophiocordyceps sinensis (Ophiocordycipitaceae) using an ISSR-TAIL-PCR method, Am. J. Bot., 2011, vol. 98. e391-4

    Article  PubMed  CAS  Google Scholar 

  87. Godwin, I.D., Aitken, E.A., and Smith, L.W., Application of inter simple sequence repeat (ISSR) markers to plant genetics, Electrophoresis, 1997, vol. 18, pp. 1524–1528.

    Article  PubMed  CAS  Google Scholar 

  88. Kumar, L.D., Kathirvel, M., Rao, G.V., and Nagaraju, J., DNA profiling of disputed chili samples (Capsicum annum) using ISSR-PCR and FISSR-PCR marker assays, Forensic Sci. Int., 2001, vol. 116, pp. 63–68.

    Article  PubMed  CAS  Google Scholar 

  89. Albani, M.C., Battey, N.H., and Wilkinson, M.J., The development of ISSR-derived SCAR markers around the SEASONAL FLOWERING LOCUS (SFL) in Fragaria vesca, Theor. Appl. Genet., 2004, vol. 109, pp. 571–579.

    Article  PubMed  CAS  Google Scholar 

  90. Lian, C.L., Abdul Wadud, M., Geng, Q., et al., An improved technique for isolating codominant compound microsatellite markers, J. Plant Res., 2006, vol. 119, pp. 415–417.

    Article  PubMed  CAS  Google Scholar 

  91. Gupta, M., Chyi, Y.S., Romero-Severson, J., and Owen, J.L., Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple- sequence repeats, Theor. Appl. Genet., 1994, vol. 89, pp. 998–1006.

    PubMed  CAS  Google Scholar 

  92. Hayden, M.J., Stephenson, P., Logojan, A.M., et al., A new approach to extending the wheat marker pool by anchored PCR amplification of compound SSRs, Theor. Appl. Genet., 2004, vol. 108, pp. 733–742.

    Article  PubMed  CAS  Google Scholar 

  93. Perring, T.M., Cooper, A.D., Rodriguez, R.J., et al., Identification of a whitefly species by genomic and behavioral studies, Science, 1993, vol. 259, pp. 74–77.

    Article  PubMed  CAS  Google Scholar 

  94. Bornet, B. and Branchard, M., Nonanchored Inter Simple Sequence Repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting, Plant Mol. Biol. Rep., 2001, vol. 19, pp. 209–215.

    Article  CAS  Google Scholar 

  95. D’Ovidio, R., Tanzarella, O.A., and Porceddu, E., Rapid and efficient detection of genetic polymorphism in wheat through amplification by polymerase chain reaction, Plant Mol. Biol., 1990, vol. 15, pp. 169–171.

    Article  PubMed  Google Scholar 

  96. Nybom, H., Weising, K., and Rotter, B., DNA fingerprinting in botany: past, present, future, Invest. Genet., 2014, vol. 5.

  97. Vester, B., Lundberg, L.B., Sorensen, M.D., et al., Improved RNA cleavage by LNAzyme derivatives of DNAzymes, Biochem. Soc. Trans., 2004, vol. 32, pp. 37–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Kuluev.

Additional information

Original Russian Text © B.R. Kuluev, An.Kh. Baymiev, G.A. Gerashchenkov, D.A. Chemeris, V.V. Zubov, A.R. Kuluev, Al.Kh. Baymiev, A.V. Chemeris, 2018, published in Genetika, 2018, Vol. 54, No. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuluev, B.R., Baymiev, A.K., Gerashchenkov, G.A. et al. Random Priming PCR Strategies for Identification of Multilocus DNA Polymorphism in Eukaryotes. Russ J Genet 54, 499–513 (2018). https://doi.org/10.1134/S102279541805006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541805006X

Keywords

Navigation