Skip to main content
Log in

Molecular Study of the Extension Locus in Association with Coat Colour Variation of Iranian Indigenous Sheep Breeds

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A tremendous variety is observed in coat colouration of the Iranian indigenous sheep, whereas a few molecular based studies have been carried out to identify the responsible genes in this geographical area. Function and distribution of melanin, categorized as phaeomelanin and eumelanin determine the coat colour in vertebrates, which are primarily regulated by interactions of the two main loci, agouti and extension, currently termed as Agouti Signalling Protein and Melanocortin 1 Receptor, respectively. In current study, the upstream region and a part of the coding sequence of the MC1R gene were assessed in three Iranian sheep breeds, Zandi, Baluchi and Zel, through molecular methods and in silico predictions. PCR-SSCP results of the 5' UTR flanking region showed a clear banding pattern in which the Eab was most frequent (67 per cent), observed in the individuals with light coloured phenotypes like white Baluchi and light grey and cream Zandi sheep, while the two homozygous patterns, Eaa and Ebb were rare in the populations. Direct sequencing the fragments revealed that the pattern is consistent with the–206G>A polymorphic site in the upstream region and four putative transcription binding sites close to this site were defined and characterized. The 12A>G and 51G>A transitions were also detected and verified as silent mutations in the 5' end of the coding region of the MC1R gene, with synonymous effect on amino acid sequence. Semi quantitative RT-PCR of various phenotypes resulted in acquisition of the highest expression in the dark grey phenotype of the Zel sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fontanesi, L., Beretti, F., Riggio, V., et al., Sequence characterization of the melanocortin 1 receptor (MC1R) gene in sheep with different coat colours and identification of the putative e allele at the ovine extension locus, Small Ruminant Res., 2010, vol. 91, nos. 2–3, pp. 200–207.

    Article  Google Scholar 

  2. Bennett, D.C. and Lamoreux, M.L., The colour loci of mice–a genetic century, Pigment Cell Res., 2003, vol. 16, no. 4, pp. 333–344.

    Article  CAS  PubMed  Google Scholar 

  3. Renieri, C., Valbonesi, A., La Manna, V., et al., Inheritance of coat colour in Merino sheep, Small Ruminant Res., 2008, vol. 74, nos. 1–3, pp. 23–29.

    Article  Google Scholar 

  4. Fontanesi, L., Rustempasic, A., Brka, M., and Russo, V., Analysis of polymorphisms in the agouti signaling protein (ASIP) and melanocortin 1 receptor (MC1R) genes and association with coat colours in two Pramenka sheep types, Small Ruminant Res., 2012, vol. 105, nos. 1–3, pp. 89–96.

    Article  Google Scholar 

  5. Chen, S., Huang, Y., Zhu, Q., et al., Sequence characterization of the MC1R gene in yak (Poephagus grunniens) breeds with different coat colors, J. Biomed. Biotechnol., 2009, vol. 2009, article ID 861046, 6 pages. doi 10.1155/2009/861046

  6. Klungland, H. and Våge, D.I., Pigmentary switches in domestic animal species, Ann. N.Y. Acad. Sci., 2003, vol. 994, pp. 331–338.

    Article  CAS  PubMed  Google Scholar 

  7. Fontanesi, L., Forestier, L., Allain, D., et al., Characterization of the rabbit agouti signaling protein (ASIP) gene: transcripts and phylogenetic analyses and identification of the causative mutation of the nonagouti black coat colour, Genomics, 2010, vol. 95, no. 3, pp. 166–175.

    Article  CAS  PubMed  Google Scholar 

  8. Hearing, V.J., Determination of melanin synthetic pathways, J. Invest. Dermatol., 2011, vol. 17, 131(E1), pp. E8–E11. doi 10.1038/skinbio.2011.4

    Article  Google Scholar 

  9. Norris, B.J. and Whan, V.A., A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep, Genome Res., 2008, vol. 18, no. 8, pp. 1282–1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Switonski, M., Mankowska, M., and Salamon, S., Family of melanocortin receptor (MCR) genes in mammals-mutations, polymorphisms and phenotypic effects, J. Appl. Genet., 2013, vol. 54, no. 4, pp. 461–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hepp, D., Gonçalves, G.L., Moreira, G.R., et al., Identification of the e allele at the Extension locus (MC1R) in Brazilian Creole sheep and its role in wool colour variation, Genet. Mol. Res., 2012, vol. 11, no. 3, pp. 2997–3006.

    Article  CAS  PubMed  Google Scholar 

  12. Rouzaud, F. and Hearing, H., Regulatory elements of the melanocortin 1 receptor, Peptides, 2005, vol. 26, no. 10, pp. 1858–1870.

    Article  CAS  PubMed  Google Scholar 

  13. Fontanesi, L., Beretti, F., Riggio, V., et al., Missense and nonsense mutations in melanocortin 1 receptor (MC1R) gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences, BMC Genet., 2009, vol. 10, p. 47. doi 10.1186/1471-2156-10-47

    Article  PubMed  PubMed Central  Google Scholar 

  14. Miao, Y.W., Wu, G.S., Wang, L., et al., The role of MC1R gene in buffalo coat colour, Sci. China: Life Sci., 2010, vol. 53, no. 2, pp. 267–272.

    Article  CAS  Google Scholar 

  15. Xi, D., Liu, Q., Huo, Y., et al., Nucleotide diversity of the melanocortin 1 receptor gene (MC1R) in the gayal (Bos frontalis), Mol. Biol. Rep., 2012, vol. 39, no. 7, pp. 7293–7301.

    Article  CAS  PubMed  Google Scholar 

  16. Jinlong, H., Hailong, H., Pei, W., et al., The association of MC1R gene with coat colour of Banna Mini-pig inbred line (BMI), J. Anim. Vet. Adv., 2012, vol. 11, no. 4, pp. 503–508.

    Article  Google Scholar 

  17. Babicz, M., Pastwa, M., Skrzypczak, E., and Buczynski, J.T., Variability in the melanocortin 1 receptor (MC1R) gene in wild boars and local pig breeds in Poland, Anim. Genet., 2013, vol. 44, no. 3, pp. 357–358.

    Article  CAS  PubMed  Google Scholar 

  18. Brockerville, R.M., McGrath, M.J., Pilgrim, B.L., and Marshall, H.D., Sequence analysis of three pigmentation genes in the Newfoundland population of Canis latrans links the Golden Retriever Mc1r variant to white coat colour in coyotes, Mammal. Genome, 2013, vol. 24, nos. 3–4, pp. 134–141.

    Article  CAS  Google Scholar 

  19. Dreger, D.L. and Schmutz, S.M., A new mutation in MC1R explains a coat colour phenotype in 2 “old” breeds: Saluki and Afghan Hound, J. Hered., 2010, vol. 101, no. 5, pp. 644–649.

    Article  CAS  PubMed  Google Scholar 

  20. Yang, G.L., Fu, D.L., Lang, X., et al., Mutations in MC1R gene determine black coat color phenotype in Chinese sheep, Sci. World J., 2013, vol. 2013, p. 675382. doi 10.1155/2013/675382.eCollection2013

    Google Scholar 

  21. Gratten, J., Pilkington, J.G., Brown, E.A., et al., The genetic basis of recessive self-colour pattern in a wild sheep population, Heredity (Edinburgh), 2010, vol. 104, no. 2, pp. 206–214.

    Article  CAS  Google Scholar 

  22. Deng, W.D., Shu, W., Yang, S.L., et al., Pigmentation in Black-boned sheep (Ovis aries): association with polymorphism of the MC1R gene, Mol. Boil. Rep., 2009, vol. 36, no. 3, pp. 431–436.

    Article  CAS  Google Scholar 

  23. Miller, S.A., Dykes, D.D., and Polesky, H.F., A simple salting out procedure for extracting DNA from human nucleated cells, Nucleic Acids Res., 1988, vol. 16, no. 3, p. 1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Orita, M., Iwahana, H., Kanazawa, H., et al., Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, no. 8, pp. 2766–2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okonechnikov, K., Golosova, O., Fursov, M., and UGENE team, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 2012, vol. 28, no. 8, pp. 1166–1167.

    Article  CAS  PubMed  Google Scholar 

  26. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95–98.

    CAS  Google Scholar 

  27. Schug, J., Using TESS to predict transcription factor binding sites in DNA sequence, Current Protocols in Bioinformatics, chapter 2, unit 2.6, 2008, vol. 21 (2.6), pp. 2.6.1–2.6.15. doi 10.1002/0471250953.bi0206s21

  28. Hartl, D.L. and Clark, A.G., Principles of Population Genetics, Sunderland: Sinauer, 2006, chapter 1, 4th ed.

    Google Scholar 

  29. Doyle, J.R., Fortin, J.P., Beinborn, M., and Kopin, A.S., Selected melanocortin 1 receptor single-nucleotide polymorphisms differentially alter multiple signaling pathways, J. Pharmacol. Exp. Ther., 2012, vol. 342, no. 2, pp. 318–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gratten, J., Beraldi, D., Lowder, B.V., et al., Compelling evidence that a single nucleotide substitution in TYRP1 is responsible for coat-colour polymorphism in a free-living population of Soay sheep, Proc. R. Soc. London, Ser. B, 2007, vol. 274, no. 1610, pp. 619–626.

    Article  CAS  Google Scholar 

  31. Mahmoud, A.H., Mashaly, A.M., Rady, A.M., Al-Anazi, K.M., et al., Allelic variation of melanocortin-1 receptor locus in Saudi indigenous sheep exhibiting different color coats, Asian-Australas. J. Anim. Sci., 2017, vol. 30, no. 2, pp. 154–159.

    Article  PubMed  Google Scholar 

  32. Treitel, M.A. and Carlson, M., Repression by SSN6-TUP1 is directed by MIGl, a repressor/activator protein, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, no. 8, pp. 3132–3136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schuller, H.J., Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae, Current Genet., 2003, vol. 43, no. 3, pp. 139–160.

    Google Scholar 

  34. Ostling, J., Carlberg, M., and Ronne, H., Functional domains in the Migl repressor, Mol. Cell Biol., 1996, vol. 16, no. 3, pp. 753–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Young, E.T., Dombek, K.M., Tachibana, C., and Ideker, T., Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adrl and Cat8, J. Biol. Chem., 2003, vol. 278, no. 28, pp. 26146–26158.

    Article  CAS  PubMed  Google Scholar 

  36. Levy, C., Khaled, M., Fishet, D.E., MITF: master regulator of melanocyte development and melanoma oncogene, Trends Mol. Med., 2006, vol. 12, no. 9, pp. 406–414.

    Article  CAS  PubMed  Google Scholar 

  37. Tachibana, M., MITF: a stream flowing for pigment cells, Pigment Cell Res., 2000, vol. 13, no. 4, pp. 230–240.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Masoudi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, M., Masoudi, A.A., Amirinia, C. et al. Molecular Study of the Extension Locus in Association with Coat Colour Variation of Iranian Indigenous Sheep Breeds. Russ J Genet 54, 464–471 (2018). https://doi.org/10.1134/S1022795418040026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418040026

Keywords

Navigation