Skip to main content
Log in

Peculiarities of Mutation Process in X Chromosome of Drosophila melanogaster Z3314 Line from Zvenigorodka (Ukraine) Natural Population

  • General Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The Drosophila melanogaster Z3314 line isolated from a Zvenigorodka (Ukraine) natural population is characterized by the manifestation and emergence of a wide spectrum of molecular aberrations. Among them, two types (the wing venation anomaly and violation of the leg segmentation) were the most represented. It was demonstrated that the frequency of manifestation (penetrance) and the expressiveness of these phenotypic aberrations increase with an increase in the temperature. When the Z3314 line is bred in the laboratory, autosomal visible rase (ra: 3–97.3) mutation, which leads to reduction of a part of dorso-central and scutellaria macrochaetae, was detected (isolated and identified). A number of genetic peculiarities that determined the consistency and prospects of the study were found during the mutation process study in the Z3314 line. The Z3314 line is characterized by a high frequency of the emergence of visible mutations in the X-Z3314 chromosome, which persisted for a long time of the breeding under laboratory conditions (from 2003 to 2011). Locus-specific high genetic instability in the singed locus in the X-Z3314 chromosome persisted from the moment of emergence of the first mutant alleles in 2006 until the end of the study. The emergence of mutations was observed both during the line breeding “inside” (in the case of brother–sister crossings) and after the crossings of the X-Z3314 chromosome carrier males with females of the С(1)DX,ywf/Y laboratory line with linked X chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chetverikov, S.S., About some moments in the evolutionary process from the point of view of modern genetics, Zh. Eksp. Boil., Ser. A, 1926, vol. 2, no. 1, pp. 3–54.

    Google Scholar 

  2. Duseeva, N.D., High yellow gene mutability in natural populations of Drosophila melanogaster, Dokl. Akad. Nauk SSSR, 1948, vol. 59, no. 2, pp. 329–331.

    Google Scholar 

  3. Dubinin, N.P., Evolyutsiya populyatsii i radiatsiya (Evolution of Populations and Radiation), Moscow: Atomizdat, 1966.

    Google Scholar 

  4. Berg, R.L., Yellow mutation in the Uman population of Drosophila melanogaster, Vestn. Leningrad. Univ., Ser. Biol., 1961, no. 1, pp. 77–89.

    Google Scholar 

  5. Golubovskii, M.D., Ivanov, Yu.N., Zakharov, I.K., and Berg, R.L., Study of synchronous and parallel changes in gene pools in natural populations of fruit flies, Drosophila melanogaster, Genetika (Moscow), 1974, vol. 10, no. 4, pp. 72–83.

    Google Scholar 

  6. Tinyakov, G.G., Highly mutable line from the wild population of Drosophila melanogaster, Dokl. Akad. Nauk SSSR, 1939, vol. 22, no. 9, p. 615.

    Google Scholar 

  7. Demerec, M., Unstable genes in Drosophila, Cold Spring Harbor Symp. Quant. Biol., 1941, vol. 9, pp. 145–159.

    Article  Google Scholar 

  8. Neel, J.V., A study of a case of high mutation rate in Drosophila melanogaster, Genetics, 1942, vol. 27, pp. 519–536.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Green, M., The genetic of mutable gene at the white locus of Drosophila melanogaster, Genetics, 1967, vol. 56, pp. 467–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zakharov, I.K. and Skibitskii, E.E., Genetics of unstable alleles from genes on the X-chromosome isolated during the outbreak of the yellow mutations in 1982— 1991 in the natural population of Drosophila melanogaster in Uman’, Genetika (Moscow), 1995, vol. 31, no. 8, pp. 1079–1084.

    CAS  Google Scholar 

  11. Yurchenko, N.N. and Zakharov, I.K., Mutable XZchromosome isolated from natural population of Drosophila melanogaster, Genetika (Moscow), 1995, vol. 31, no. 3, p. 422–426.

    Google Scholar 

  12. Berg, R.L., A simultaneous mutability rise at the singed locus in two out of three Drosophila melanogaster population studied in 1973, Drosophila Inform. Serv., 1974, no. 51, p. 100.

    Google Scholar 

  13. Golubovskii, M.D., The instability of the singed locus in Drosophila melanogaster: mutant and normal alleles that reverse according to the all-or-nothing principle, Genetika (Moscow), 1977, vol. 13, no. 5, pp. 847–861.

    Google Scholar 

  14. Golubovskii, M.D. and Erokhina, I.D., Mutation process in lines with super-mutable alleles of the singed locus in Drosophila melanogaster, Genetika (Moscow), 1977, vol. 13, no. 7, pp. 1210–1219.

    Google Scholar 

  15. Zakharov, I.K. and Golubovskii, M.D., A series of unstable alleles of the singed gene isolated from natural populations of Drosophila melanogaster: patterns of mutation, Genetika (Moscow), 1984, vol. 20, no. 7, pp. 1117–1124.

    Google Scholar 

  16. Zakharov, I.K., Mutations and mutation process in natural populations of Drosophila melanogaster, Extended Abstract of Doctoral Dissertation, Insitut Tsitologii i Genetiki, Sibirskoe Otdelenie, Rossiiskaya Akademiya Nauk, Novosibirsk, 1995.

    Google Scholar 

  17. Zakharov, I.K., Ivannikov, A.V., Skibitskii, E.E., et al., Genetic properties of alleles from genes on the X-chromosome isolated from natural Drosophila melanogaster populations during mutational outbreak, Dokl. Biol. Sci., 1995, vol. 341, no. 1, pp. 126–129.

    CAS  Google Scholar 

  18. Zakharov, I.K., Ivannikov, A.V., and Yurchenko, N.N., Dynamics of the mutational process and the gene pool in Drosophila melanogaster natural populations, Sovremennye kontseptsii evolyutsionnoi genetiki (Modern Concepts of Evolutionary Genetics), Shumnyi, V.K. and Markel’, A.L., Eds., Novosibirsk: Inst. Tsitol. Genet., Sib. Otd. Ross. Akad. Nauk, 2000, pp. 151–159.

  19. Medvedev, N.N., Prakticheskaya genetika (Practical Genetics), Moscow: Nauka, 1966.

    Google Scholar 

  20. Golubovskii, M.D., Zakharov, I.K., and Sokolova, O.A. Analysis of the instability of the yellow gene alleles isolated from the natural population of fruit fly during mutational outbreak, Genetika (Moscow), 1987, vol. 23, no. 9, pp. 1595–1603.

    Google Scholar 

  21. Green, M.M., A case for DNA insertion mutants in Drosophila melanogaster, in DNA Insertion Elements, Plasmids, and Episomes, Bukhari, A.I., Shapiro, J.A., and Adhya, S.L., Eds., New York: Cold Spring Harbor Lab., 1977, pp. 437–445.

    Google Scholar 

  22. Golubovsky, M.D., Ivanov, Y.N., and Green, M.M. Genetic instability in Drosophila melanogaster: putative multiple insertion mutants at the singed bristle locus, Proc. Natl. Acad. Sci. U.S.A., 1977, vol. 74, pp. 2973–2975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Biessmann, H., Molecular analysis of the yellow gene (y) region of Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A., 1985, vol. 82, pp. 7369–7373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Hare, K., Tam, J.L.-Y., Lim, J.K., et al., Rearrangements at a hobo element inserted into the first intron of the singed gene in the unstable sn49 system of Drosophila melanogaster, Mol. Gen. Genet., 1998, vol. 257, pp. 452–460.

    Article  PubMed  Google Scholar 

  25. Zakharenko, L.P., Zakharov, I.K., Romanova, O.A., et al., “Mode for mutation” in the Uman’ natural population of Drosophila melanogaster is due to the spreading of a hobo-induced unstable inversion in the regulatory region of the yellow gene, Russ. J. Genet., 2000, vol. 36, no. 6, pp. 603–610.

    CAS  Google Scholar 

  26. Engels, W.R., Extrachromosomal control of mutability in Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A., 1979, vol. 76, no. 8, pp. 4011–4015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gracheva, E.M., Zakharov, I.K., Voloshina, M.A., et al., Mutation bursts at the yellow locus in a natural population of Drosophila melanogaster are associated with a hobo insertion, Russ. J. Genet., 1998, vol. 34, no. 4, pp. 364–370.

    CAS  Google Scholar 

  28. Lindsley, D.L. and Zimm, G.G., The Genome of Drosophila melanogaster, New York: Acad. Press, 1992.

    Google Scholar 

  29. http://flybase.org.

  30. Yurchenko, N.N., O’Hare, K., and Zakharov, I.K., Unstable system sn49 in Drosophila melanogaster: analysis by blot-hybridization and polymerase chain reaction, Russ. J. Genet., 1996, vol. 32, no. 5, pp. 533–539.

    CAS  Google Scholar 

  31. Ives, P.T., The importance of mutation rate genes in evolution, Evolution, 1950, vol. 4, no. 3, pp. 236–252.

    Article  Google Scholar 

  32. Voloshina, M.A. and Golubovskii, M.D., Genetic analysis of chromosome and cytoplasmic effects of the R-M hybrid dysgenesis system on the instability of mutations caused by the introduction of various mobile elements in Drosophila, Genetika (Moscow), 1986, vol. 22, no. 4, pp. 624–632.

    Google Scholar 

  33. Golubovskii, M.D., Voloshina, M.A., Zakharov, I.K., and Yurchenko, N.N. The relationship between P and mdg3 mobile elements in Drosophila melanogaster: the genetic aspect, Genetika (Moscow), 1986, vol. 22, no. 10, pp. 2452–2458.

    CAS  Google Scholar 

  34. Zakharov, I.K., Genetics of natural populations of Drosophila melanogaster: variation in mutability and concentration of the singed gene alleles in natural populations, Genetika (Moscow), 1984, vol. 20, no. 8, pp. 1295–1304.

    Google Scholar 

  35. Yurchenko, N.N., Zakharov, I.K., and Golubovskii, M.D. Influence of the homologous locus structure on the behavior of the Tn::clw transposon in Drosophila melanogaster, Genetika (Moscow), 1985, vol. 21, no. 8, pp. 1290–1297.

    CAS  Google Scholar 

  36. Yurchenko, N.N., Koryakov, D.E., and Zakharov, I.K. Appearance of recessive lethal mutations in derivatives of the unstable XZ chromosome of Drosophila melanogaster, Genetica (Moscow), 1995, vol. 31, no. 9, pp. 1218–1224.

    Google Scholar 

  37. Golubovskii, M.D. and Zakharov, I.K., Insertional mutagenesis in natural populations of Drosophila, in Uspekhi teoreticheskoi i prikladnoi genetiki (Advances in Theoretical and Applied Genetics), Novosibirsk: Inst. Tsitol. Genet., Sib. Otd. Akad. Nauk SSSR, 1982, pp. 180–182.

    Google Scholar 

  38. Rutherford, S.L. and Lindquist, S., Hsp90 as a capacitor for morphological evolution, Nature, 1998, vol. 396, pp. 336–342.

    Article  CAS  PubMed  Google Scholar 

  39. Kidwell, M.G., Kidwell, J., and Sved, J. Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination, Genetics, 1977, vol. 86, pp. 813–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kovalenko, L.V., Zakharenko, L.P., and Zakharov, I.K. Transposition of the hobo element in Drosophila melanogaster somatic cells, Russ. J. Genet., 2006, vol. 42, no. 2, pp. 122–128. https://doi.org/10.1134/S1022795- 406020049.

    Article  CAS  Google Scholar 

  41. Green, M.M., Todo, T., Ryo, H., and Fujikawa, K. Genetic-molecular basis for a simple Drosophila melanogaster somatic system that detects environmental mutagens, Proc. Natl. Acad. Sci. U.S.A., 1986, vol. 83, pp. 6667–6671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tcheressiz, S., Calco, V., Arnaud, F., et al., Expression of the Idefix retrotransposon in early follicle cells in the germarium of Drosophila melanogaster determined by its LTR sequence and a specific genomic context, Mol. Genet. Genomics, 2002, vol. 267, no. 2, pp. 133–141.

    Article  CAS  PubMed  Google Scholar 

  43. Morozova, T.V., Tcybulko, E.A., and Pasyukova, E.G. Regulatory elements of the copia retrotransposon determine different levels of expression in different organs of males and females of Drosophila melanogaster, Russ. J. Genet., 2009, vol. 45, p. 147.

    Article  CAS  Google Scholar 

  44. David, J.R. and Capy, P., Genetic variation of Drosophila melanogaster natural populations, Trends Genet., 1988, vol. 4, no. 4, pp. 106–111.

    Article  CAS  PubMed  Google Scholar 

  45. Kidwell, M.G. and Lisch, D.R., Transposable elements as sources of genomic variation, in Mobile DNA II, 2002, pp. 59–93.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Koromyslov.

Additional information

Original Russian Text © Yu.A. Koromyslov, Yu.Yu. Ilinsky, A.V. Ivannikov, I.K. Zakharov, 2018, published in Genetika, 2018, Vol. 54, No. 2, pp. 167–176.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koromyslov, Y.A., Ilinsky, Y.Y., Ivannikov, A.V. et al. Peculiarities of Mutation Process in X Chromosome of Drosophila melanogaster Z3314 Line from Zvenigorodka (Ukraine) Natural Population. Russ J Genet 54, 157–165 (2018). https://doi.org/10.1134/S1022795418020114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418020114

Keywords

Navigation