Skip to main content

Advertisement

Log in

Methylation in the regulation of the expression of chromosome 3 and microRNA genes in clear-cell renal cell carcinomas

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The methylation of CpG islands in promoter regions, together with the interaction of miRNAs with the mRNAs of their target genes on the posttranscriptional level, are complex epigenetic mechanisms that perform the delicate and dynamic regulation of genes and signal transduction pathways in the cell. This review summarizes the results obtained by the authors, as well as the literature data, on the roles of methylation in regulating the protein-coding genes of chromosome 3 and a number of miRNA genes in clear-cell renal cell carcinomas. The results are based on the use of genomic NotI-microarrays (which allow the identification of both methylation and deletions in genes containing CpG islands) and on some other approaches. The application of NotI-microarray technology to the analysis of the chromosome-3 short arm, a region of frequent deletions in tumors, gave us the opportunity to identify many novel genes associated with kidney cancer pathogenesis. The relationship between alterations in the expression levels and methylation of chromosome 3 genes, kidney cancer progression, and metastasis was shown. New microRNAs involved in kidney cancer pathogenesis were identified as well. The functions of microRNA genes methylated in kidney cancer were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

miRNA:

microRNA

NotI-MA:

NotI-microarrays

3p:

chromosome-3 short arm

CCRCC:

clear-cell renal cell carcinoma

References

  1. Vasudev, N.S., Selby, P.J., and Banks, R.E., Renal cancer biomarkers: the promise of personalized care, BMC Med., 2012, vol. 10, p. 112.

    PubMed Central  PubMed  Google Scholar 

  2. Cairns, P., Renal cell carcinoma, Cancer Biomarkers, 2011, vol. 9, nos. 1–6, pp. 461–473.

    PubMed Central  Google Scholar 

  3. Xu, X., Wu, J., Li, S., et al., Downregulation of microRNA-182-5p contributes to renal cell carcinoma proliferation via activating the AKT/FOXO3A signaling pathway, Mol. Cancer, 2014, vol. 13, p. 109.

    PubMed Central  PubMed  Google Scholar 

  4. Davydov, M.I. and Aksel’, E.M., Statistics of malignant neoplasms in Russia and the CIS in 2010, Vestn. Ross. Oncol. Nauchn. Tsentra im. N.N. Blokhina Ross. Akad. Med. Nauk, 2012, vol. 22, no. 3, pp. 54–61.

    Google Scholar 

  5. ENCODE Consortium Architecture of the human regulatory network derived from ENCODE data, Nature, 2012, vol. 489, pp. 91–100.

  6. ENCODE Consortium Landscape of transcription in human cells, Nature, 2012, vol. 489, pp. 101–108.

  7. Jones, P.A. and Baylin, S.B., The epigenetics of cancer, Cell, 2007, vol. 28, no. 4, pp. 683–692.

    Google Scholar 

  8. Kushlinskii, N.E. and Nemtsova, M.V., Molecular mechanisms of tumor growth, Patogenez, 2014, vol. 12, no. 1, pp. 4–14.

    Google Scholar 

  9. Esteller, M., Cancer epigenomics: DNA methylomes and histone-modification maps, Nat. Rev. Genet., 2007, vol. 8, no. 4, pp. 286–298.

    CAS  PubMed  Google Scholar 

  10. Heller, G., Zielinski, C.C., and Zöchbauer-Müller, S., Lung cancer: from single-gene methylation to methylome profiling, Cancer Metastasis Rev., 2010, vol. 29, no. 1, pp. 95–107.

    CAS  PubMed  Google Scholar 

  11. Dumitrescu, R.G., Epigenetic markers of early tumor development, Methods Mol. Biol., 2012, vol. 863, pp. 3–14.

    CAS  PubMed  Google Scholar 

  12. Kashuba, V.I., Gizatullin, R.Z., Protopopov, A.I., et al., Analysis of NotI linking clones isolated from human chromosome 3 specific libraries, Gene, 1999, vol. 39, no. 2, pp. 259–271.

    Google Scholar 

  13. Li, J., Protopopov, A., Wang, F., et al., NotI subtraction and NotI-specific microarrays to detect copy number and methylation changes in whole genomes, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 16, pp. 10724–10729.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Zabarovsky, E.R., Senchenko, V., Loginov, V., et al., Positional cloning of tumor suppressor genes from 3p21.3 involved in major human cancers, in Horizons in Cancer Research, Columbus, F., Ed., New York: Nova Sci. Pub., 2011, vol. 42, pp. 103–127.

    Google Scholar 

  15. Dmitriev, A.A., Kashuba, V.I., Haraldson, K., et al., Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays, Epigenetics, 2012, vol. 7, no. 5, pp. 502–513.

    CAS  PubMed  Google Scholar 

  16. Dmitriev, A.A., Rudenko, E.E., Kudryavtseva, A.V., et al., Epigenetic alterations of chromosome 3 revealed by NotI-microarrays in clear cell renal cell carcinoma, BioMed Res. Int., 2014. Article ID 735292. p. 9. http://dx.doi.org/10.1155/2014/735292

    Google Scholar 

  17. Kashuba, V., Dmitriev, A.A., Krasnov, G.S., et al., NotI microarrays: novel epigenetic markers for early detection and prognosis of high grade serous ovarian cancer, Int. J. Mol. Sci., 2012, vol. 13, no. 10, pp. 13352–13377.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Senchenko, V.N., Kisseljova, N.P., Ivanova, T.A., et al., Novel tumor suppressor candidates on chromosome 3 revealed by NotI-microarrays in cervical cancer, Epigenetics, 2013, vol. 8, no. 4, pp. 409–420.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Dweep, H., Sticht, C., Pandey, P., and Gretz, N., miRWalk-database: prediction of possible miRNA binding sites by “walking” the genes of three genomes, J. Biomed. Inform., 2011, vol. 44, pp. 839–847.

    CAS  PubMed  Google Scholar 

  20. Sato, F., Tsuchiya, S., Meltzer, S.J., and Shimizu, K., MicroRNAs and epigenetics, FEBS J., 2011, vol. 278, no. 10, pp. 1598–1609.

    CAS  PubMed  Google Scholar 

  21. Hildebrandt, M.A., Gu, J., Lin, J., et al., Has miR 9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma, Oncogene, 2010, vol. 29, no. 42, pp. 5724–5728.

    CAS  PubMed  Google Scholar 

  22. Vogt, M., Munding, J., Grüner, M., et al., Frequent concomitant inactivation of miR 34a and miR 34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas, Virchows Arch., 2011, vol. 458, no. 3, pp. 313–322.

    PubMed  Google Scholar 

  23. Kok, K., Naylor, S.L., and Buys, C.H., Deletions of the short arm of chromosome 3 in solid tumors and the search for suppressor genes, Adv. Cancer Res., 1997, vol. 71, pp. 27–92.

    CAS  PubMed  Google Scholar 

  24. Braga, E., Pugacheva, E., Bazov, I., et al., Comparative allelotyping of the short arm of human chromosome 3 in epithelial tumors of four different types, FEBS Lett., 1999, vol. 454, no. 3, pp. 215–219.

    CAS  PubMed  Google Scholar 

  25. Braga, E., Senchenko, V., Bazov, I., et al., Critical tumor-suppressor gene regions on chromosome 3p in major human epithelial malignancies: allelotyping and quantitative real-time PCR, Int. J. Cancer, 2002, vol. 100, no. 5, pp. 534–541.

    CAS  PubMed  Google Scholar 

  26. Braga, E., Loginov, W., Khodyrev, D., et al., A novel MECA3 region in human 3p21.3 harboring putative tumor suppressor genes and oncogenes, Exp. Oncol., 2011, vol. 33, no. 1, pp. 33–41.

    CAS  PubMed  Google Scholar 

  27. Lerman, M.I. and Minna, J.D., The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium, Cancer Res., 2000, vol. 60, no. 21, pp. 6116–6133.

    CAS  PubMed  Google Scholar 

  28. Senchenko, V., Liu, J., Braga, E., et al., Deletion mapping using quantitative real-time PCR identifies two distinct 3p21.3 regions affected in most cervical carcinomas, Oncogene, 2003, vol. 22, no. 19, pp. 2984–2992.

    CAS  PubMed  Google Scholar 

  29. Senchenko, V.N., Liu, J., Loginov, W., et al., Discovery of frequent homozygous deletions in chromosome 3p21.3 LUCA and AP20 regions in renal, lung and breast carcinomas, Oncogene, 2004, vol. 23, no. 34, pp. 5719–5728.

    CAS  PubMed  Google Scholar 

  30. Loginov, V.I., Bazov, V.I., Khodyrev, D.S., et al., Human chromosome 3p regions of putative tumorsuppressor genes in renal, breast, and ovarian carcinomas, Russ. J. Genet., 2008, vol. 44, no. 2, pp. 209–214.

    CAS  Google Scholar 

  31. Zabarovsky, E.R., Lerman, M.I., and Minna, J.D., Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers, Oncogene, 2002, vol. 21, no. 45, pp. 6915–6935.

    CAS  PubMed  Google Scholar 

  32. Zabarovsky, E.R., Braga, E.A., Loginov, V., et al., Novel methylation-dependent markers/tumor suppressor genes involved in the development of renal cell cance, in Horizons in Cancer Research, Columbus, F., Ed., New York: Nova Science Publishers, 2011, vol. 42, no. 5, pp. 129–152.

    Google Scholar 

  33. Braga, E.A., Kashuba, V.I., Malyukova, A.V., et al., New tumor suppressor genes in hot spots of human chromosome 3: new methods of identification, Mol. Biol. (Moscow), 2003, vol. 37, no. 2, pp. 170–185.

    CAS  Google Scholar 

  34. Braga, E.A., Kiselev, L.L., and Zabarovskii, E.R., From identification of genomic polymorphisms to diagnostic and prognostic markers of human epithelial tumors, Mol. Biol. (Moscow), 2004, vol. 38, no. 2, pp. 145–154.

    CAS  Google Scholar 

  35. Hesson, L.B., Cooper, W.N., and Latif, F., Evaluation of the 3p21.3 tumour-suppressor gene cluster, Oncogene, 2007, vol. 26, no. 52, pp. 7283–7301.

    CAS  PubMed  Google Scholar 

  36. Gordiyuk, V.V., Genetic and epigenetic changes of genes on chromosome 3 in human urogenital tumors, Biopolym. Cell, 2011, vol. 27, no. 1, pp. 25–35.

    CAS  Google Scholar 

  37. Gordiyuk, V.V., Kondratov, A.G., Gerashchenko, A.V., and Kashuba, V.I., Novel epigenetic markers of early epithelial tumor growth and prognosis, Biopolym. Cell, 2013, vol. 29, no. 3, pp. 215–220.

    CAS  Google Scholar 

  38. Khodyrev, D.S., Loginov, V.I., Pronina, I.V., et al., Changing in methylation of gene critical regions on chromosome 3 in epithelial tumors, Mol. Med., 2011, no. 1, pp. 3–10.

    Google Scholar 

  39. Dammann, R., Schagdarsurengin, U., Seidel, C., et al., The tumor suppressor RASSF1A in human carcinogenesis: an update, Histol. Histopathol., 2005, vol. 20, no. 2, pp. 645–663.

    CAS  PubMed  Google Scholar 

  40. Dreijerink, K., Braga, E., Kuzmin, I., et al., The candidate tumor suppressor gene, RASSF1a, from human chromosome 3p21.3 is involved in kidney tumorigenesis, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 13, pp. 7504–7509.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Tommasi, S., Dammann, R., Zhang, Z., et al., Tumor susceptibility of Rassf1A knockout mice, Cancer Res., 2005, vol. 65, no. 1, pp. 92–98.

    CAS  PubMed  Google Scholar 

  42. Onay, H., Pehlivan, S., Koyuncuoglu, M., et al., Multigene methylation analysis of conventional renal cell carcinoma, Urol. Int., 2009, vol. 83, no. 1, pp. 107–112.

    CAS  PubMed  Google Scholar 

  43. Karray-Chouayekh, S., Trifa, F., Khabir, A., et al., Aberrant methylation of RASSF1A is associated with poor survival in Tunisian breast cancer patients, J. Cancer Res. Clin. Oncol., 2010, vol. 136, no. 2, pp. 203–210.

    CAS  PubMed  Google Scholar 

  44. Loginov, V.I., Malyukova, A.V., Seregin, Yu.A., et al., Methylation of the promoter region of the RASSF1A candidate tumor suppressor gene in primary epithelial tumors, Mol. Biol. (Moscow), 2004, vol. 38, no. 4, pp. 549–560.

    CAS  Google Scholar 

  45. Loginov, V.I., Khodyrev, D.S., Pronina, I.V., et al., Methylation of the RASSF1A promoter region and the allelic imbalance frequencies in chromosome 3 critical regions correlate with progression of clear cell renal carcinoma, Mol. Biol. (Moscow), 2009, vol. 43, no. 3, pp. 394–402.

    CAS  Google Scholar 

  46. Kiselev, L.L., Senchenko, V.N., Oparina, N.Yu., et al., Tumor suppressor gene localized on the short arm of human chromosome 3, Mol. Med., 2005, no. 3, pp. 17–28.

    Google Scholar 

  47. Tse, C., Xiang, R.H., Bracht, T., and Naylor, S.L., Human Semaphorin 3B (SEMA3B) located at chromosome 3p21.3 suppresses tumor formation in an adenocarcinoma cell line, Cancer Res., 2002, vol. 62, no. 2, pp. 542–546.

    CAS  PubMed  Google Scholar 

  48. Kuroki, T., Trapasso, F., Yendamuri, S., et al., Allelic loss on chromosome 3p21.3 and promoter hypermethylation of semaphorin 3b in non-small cell lung cancer, Cancer Res., 2003, vol. 63, no. 12, pp. 3352–3355.

    CAS  PubMed  Google Scholar 

  49. Ito, M., Ito, G., Kondo, M., et al., Frequent inactivation of RASSF1A, BLU, and SEMA3B on 3p21.3 by promoter hypermethylation and allele loss in nonsmall cell lung cancer, Cancer Lett., 2005, vol. 225, no. 1, pp. 131–139.

    CAS  PubMed  Google Scholar 

  50. Loginov, V.I., Khodyrev, D.S., Pronina, I.V., et al., Two CpG islands in the SEMA3B gene: methylation in clear cell renal cell carcinoma, Mol. Biol. (Moscow), 2009, vol. 43, no. 6, pp. 1014–1018.

    CAS  Google Scholar 

  51. Senchenko, V.N., Anedchenko, E.A., Kondratieva, T.T., et al., Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer, BMC Cancer, 2010, vol. 10, p. 75.

    PubMed Central  PubMed  Google Scholar 

  52. da Costa Prando, E., Cavalli, L.R., and Rainho, C.A., Evidence of epigenetic regulation of the tumor suppressor gene cluster flanking RASSF1 in breast cancer cell lines, Epigenetics, 2011, vol. 6, no. 12, pp. 1413–1424.

    PubMed Central  PubMed  Google Scholar 

  53. Kashuba, V.I., Li, J., Wang, F., et al., RBSP3 (HYA22) is a tumor suppressor gene implicated in major epithelial malignancies, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 14, pp. 4906–4911.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Wang, F., Grigorieva, E.V., Li, J., et al., HYAL1 and HYAL2 inhibit tumor growth in vivo but not in vitro, PLoS One, 2008, vol. 3. e3031

    PubMed Central  PubMed  Google Scholar 

  55. Senchenko, V.N., Krasnov, G.S., Dmitriev, A.A., et al., Differential expression of CHL1 gene during development of major human cancers, PLoS One, 2011, vol. 6, no. 3. e15612

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Loginov, V.I., Khodyrev, D.S., Pronina, I.V., et al., Methylation of tumor significant genes of chromosome 3p correlated with the level of gene expression and cancer progression, in Modern Problems in Biochemical Physics: New Horizons, New York: Nova Sci. Publ., 2012, pp. 185–194.

    Google Scholar 

  57. Sahai, E. and Marshall, C.J., Rho-GTPases and cancer, Nat. Rev., 2002, vol. 2, no. 2, pp. 133–142.

    Google Scholar 

  58. Kamai, T., Kawakami, S., Koga, F., et al., RhoA is associated with invasion and lymph node metastasis in upper urinary tract cancer, BJU Int., 2003, vol. 91, no. 3, pp. 234–238.

    CAS  PubMed  Google Scholar 

  59. Kamai, T., Yamanishi, T., Shirataki, H., et al., Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer, Clin. Cancer Res., 2004, vol. 10, no. 14, pp. 4799–4805.

    CAS  PubMed  Google Scholar 

  60. Pillé, J.Y., Denoyelle, C., Varet, J., et al., Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo, Mol. Ther., 2005, vol. 11, no. 2, pp. 267–274.

    PubMed  Google Scholar 

  61. Kang, W.K., Lee, I., Ko, U., and Park, C., Differential effects of RhoA signaling on anticancer agent-induced cell death, Oncol. Rep., 2005, vol. 13, no. 2, pp. 299–304.

    CAS  PubMed  Google Scholar 

  62. Ma, L., Liu, Y.P., Geng, C.Z., et al., Overexpression of Rhoa is associated with progression in invasive breast duct carcinoma, Breast J., 2010, vol. 16, no. 1, pp. 105–107.

    CAS  PubMed  Google Scholar 

  63. Braga, E.A., Loginov, V.I., Klimov, E.A., et al., Activation of RHOA transcription in epithelial tumors may be caused by gene amplification and/or demethylation of the promoter region, Mol. Biol. (Moscow), 2006, vol. 40, no. 5, pp. 778–789.

    CAS  Google Scholar 

  64. Loginov, V.I., Pronina, I.V., Burdennyi, A.M., et al., The role of methylation in the regulation of the expression of functionally important genes on chromosome 3: RHOA, GPX1, USP4, DAG1, NKIRAS1 in breast tumors, Mol. Med., 2014, no. 6, pp. 30–37.

    Google Scholar 

  65. Hu, T., Guo, H., Wang, W., et al., Loss of p57 expression and Rhoa overexpression are associated with poor survival of patients with hepatocellular carcinoma, Oncol. Rep., 2013, vol. 30, no. 4, pp. 1707–1714.

    CAS  PubMed  Google Scholar 

  66. DeSalle, L.M., Latres, E., Lin, D., et al., The de-ubiquitinating enzyme Unp interacts with the retinoblastoma protein, Oncogene, 2001, vol. 20, no. 39, pp. 5538–5542.

    CAS  PubMed  Google Scholar 

  67. Gray, D.A., Inazawa, J., Gupta, K., et al., Elevated expression of Unph, a proto-oncogene at 3p21.3, in human lung tumors, Oncogene, 1995, vol. 10, no. 11, pp. 2179–2183.

    CAS  PubMed  Google Scholar 

  68. Zhang, X., Berger, F.G., Yang, J., and Lu, X., USP4 inhibits p53 through deubiquitinating and stabilizing ARF-BP1, EMBO J., 2011, vol. 30, no. 11, pp. 2177–2189.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Faucher, K., Rabinovitch-Chable, H., Barriere, G., et al., Overexpression of cytosolic glutathione peroxidase (GPX1) delays endothelial cell growth and increases resistance to toxic challenges, Biochimie, 2003, vol. 85, no. 6, pp. 611–617.

    CAS  PubMed  Google Scholar 

  70. Hussain, S.P., Amstad, P., He, P., et al., p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis, Cancer Res., 2004, vol. 64, no. 7, pp. 2350–2356.

    CAS  PubMed  Google Scholar 

  71. Min, S.Y., Kim, H.S., Jung, E.J., et al., Prognostic significance of glutathione peroxidase 1 (GPX1) downregulation and correlation with aberrant promoter methylation in human gastric cancer, Anticancer Res., 2012, vol. 32, no. 8, pp. 3169–3175.

    CAS  PubMed  Google Scholar 

  72. Kulak, M.V., Cyr, A.R., Woodfield, G.W., et al., Transcriptional regulation of the GPX1 gene by TFAP2C and aberrant CpG methylation in human breast cancer, Oncogene, 2013, vol. 32, no. 34, pp. 4043–4051.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Angeloni, D., Danilkovitch-Miagkova, A., Ivanova, T., et al., Hypermethylation of Ron proximal promoter associates with lack of full-length Ron and transcription of oncogenic short-Ron from an internal promoter, Oncogene, 2007, vol. 26, pp. 4499–4512.

    CAS  PubMed  Google Scholar 

  74. Virmani, A.K., Rathi, A., Zochbauer-Muller, S., et al., Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas, J. Natl. Cancer Inst., 2000, vol. 92, no. 16, pp. 1303–1307.

    CAS  PubMed  Google Scholar 

  75. Dulaimi, E., Ibanez de Caceres, I., Uzzo, R.G., et al., Promoter hypermethylation profile of kidney cancer, Clin. Cancer Res., 2004, vol. 10, pp. 3972–3979.

    CAS  PubMed  Google Scholar 

  76. Khodyrev, D.S., Loginov, V.I., Pronina, I.V., et al., Methylation of promoter region of RAR-beta2 gene in renal cell, breast, and ovarian carcinomas, Russ. J. Genet., 2008, vol. 44, no. 8, pp. 983–988.

    CAS  Google Scholar 

  77. Fenwick, C., Na, S.Y., Voll, R.E., et al., A subclass of Ras proteins that regulate the degradation of IkappaB, Science, 2000, vol. 287, no. 5454, pp. 869–873.

    CAS  PubMed  Google Scholar 

  78. Chen, Y., Vallee, S., Wu, J., et al., Inhibition of NF-kappaB activity by IkappaBbeta in association with kappaB-Ras, Mol. Cell. Biol., 2004, vol. 24, no. 7, pp. 3048–3056.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Pronina, I.V., Change in gene expression levels of the critical areas of human chromosome 3 in epithelial tumors of different localizations, Cand. Sci. (Biol.) Dissertation, Moscow: State Research Inst. Genet., 2010, p. 150.

    Google Scholar 

  80. Gerashchenko, G.V., Bogatyrova, O.O., Rudenko, E.E., et al., Genetic and epigenetic changes of NKIRAS1 gene in human renal cell carcinomas, Exp. Oncol., 2010, vol. 32, no. 2, pp. 71–75.

    CAS  PubMed  Google Scholar 

  81. Tang, Y., Jiang, L., and Tang, W., Decreased expression of NPRL2 in renal cancer cells is associated with unfavorable pathological, proliferation and apoptotic features, Pathol. Oncol. Res., 2014, vol. 20, no. 4, pp. 829–837.

    CAS  PubMed  Google Scholar 

  82. Yogurtcu, B., Hatemi, I., Aydin, I., and Buyru, N., NPRl2 gene expression in the progression of colon tumors, Genet. Mol. Res., 2012, vol. 11, no. 4, pp. 4810–4816.

    CAS  PubMed  Google Scholar 

  83. Liu, A.Y., Liu, D.G., Du, Y.J., et al., Relationship between tumor and peripheral blood NPRL2 mRNA levels in patients with colorectal adenoma and colorectal cancer, Cancer Biol. Ther., 2014, vol. 15, no. 5, pp. 489–495.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Gao, Y., Wang, J., and Fan, G., NPRL2 is an independent prognostic factor of osteosarcoma, Cancer Biomark., 2012–2013, vol. 12, no. 1, pp. 31–36.

    CAS  PubMed  Google Scholar 

  85. Kashuba, V.I., Pavlova, T.V., Grigorieva, E.V., et al., High mutability of the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) in cancer, PLoS One, 2009, vol. 4, no. 5. e5231. doi 10.1371/journal.pone.0005231

    PubMed Central  PubMed  Google Scholar 

  86. Jones, P.A. and Baylin, S.B., The fundamental role of epigenetic events in cancer, Nat. Rev. Genet., 2002, vol. 3, no. 6, pp. 415–428.

    CAS  PubMed  Google Scholar 

  87. Rydzanicz, M., Wrzesinski, T., Bluyssen, H.A., and Wesoly, J., Genomics and epigenomics of clear cell renal cell carcinoma: recent developments and potential applications, Cancer Lett., 2013, vol. 341, no. 2, pp. 111–126.

    CAS  PubMed  Google Scholar 

  88. Haraldson, K., Kashuba, V.I., Dmitriev, A.A., et al., LRRC3B gene is frequently epigenetically inactivated in several epithelial malignancies and inhibits cell growth and replication, Biochimie, 2012, vol. 94, no. 5, pp. 1151–1157.

    CAS  PubMed  Google Scholar 

  89. Bhat Singh, R. and Amare Kadam, P.S., Investigation of tumor suppressor genes apart from VHL on 3p by deletion mapping in sporadic clear cell renal cell carcinoma (cRCC), Urol. Oncol.: Semin. Orig. Invest., 2013, vol. 31, no. 7, pp. 1333–1342.

    Google Scholar 

  90. Gatto, F., Nookaew, I., and Nielsen, J., Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 9, pp. 866–875.

    Google Scholar 

  91. Jain, S., Wojdacz, T.K., and Su, Y.H., Challenges for the application of DNA methylation biomarkers in molecular diagnostic testing for cancer, Expert Rev. Mol. Diagn., 2013, vol. 13, no. 3, pp. 283–294.

    CAS  PubMed  Google Scholar 

  92. Hoque, M.O., Begum, S., Topaloglu, O., et al., Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer, Cancer Res., 2004, vol. 64, no. 15, pp. 5511–5517.

    CAS  PubMed  Google Scholar 

  93. Gonzalgo, M.L., Yegnasubramanian, S., Yan, G., et al., Molecular profiling and classification of sporadic renal cell carcinoma by quantitative methylation analysis, Clin. Cancer Res., 2004, vol. 10, no. 21, pp. 7276–7283.

    CAS  PubMed  Google Scholar 

  94. de Caceres, I., Dulaimi, E., Hoffman, A.M., et al., Identification of novel target genes by an epigenetic reactivation screen of renal cancer, Cancer Res., 2006, vol. 66, no. 10, pp. 5021–5028.

    Google Scholar 

  95. Jeronimo, C. and Henrique, R., Epigenetic biomarkers in urological tumors: a systematic review, Cancer Lett., 2014, vol. 342, no. 2, pp. 264–274.

    CAS  PubMed  Google Scholar 

  96. Palmisano, W.A., Divine, K.K., Saccomanno, G., et al., Predicting lung cancer by detecting aberrant promoter methylation in sputum, Cancer Res., 2000, vol. 60, no. 21, pp. 5954–5958.

    CAS  PubMed  Google Scholar 

  97. Mikeska, T., Bock, C., Do, H., and Dobrovic, A., DNA methylation biomarkers in cancer: progress towards clinical implementation, Expert Rev. Mol. Diagn., 2012, vol. 12, no. 5, pp. 473–487.

    CAS  PubMed  Google Scholar 

  98. Catto, J.W., Alcaraz, A., Bjartell, A.S., et al., MicroRNA in prostate, bladder, and kidney cancer: a systematic review, Eur. Urol., 2011, vol. 59, no. 5, pp. 671–681.

    CAS  PubMed  Google Scholar 

  99. Redova, M., Svoboda, M., and Slaby, O., MicroRNAs and their target gene networks in renal cell carcinoma, Biochem. Biophys. Res. Commun., 2011, vol. 405, no. 2, pp. 153–156.

    CAS  PubMed  Google Scholar 

  100. Heinzelmann, J., Henning, B., Sanjmyatav, J., et al., Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma, World J. Urol., 2011, vol. 29, no. 3, pp. 367–373.

    CAS  PubMed  Google Scholar 

  101. Beresneva, E.V., Rykov, S.V., Khodyrev, D.S., et al., Methylation profile of group of miRNA genes in clear cell renal cell carcinoma and their involvement in cancer progression, Russ. J. Genet., 2013, vol. 49, no. 3, pp. 320–328.

    CAS  Google Scholar 

  102. Furuta, M., Kozaki, K.I., and Tanaka, S., miR 124 and miR 203 are epigenetically silenced tumor suppressive microRNAs in hepatocellular carcinoma, Carcinogenesis, 2010, vol. 31, no. 5, pp. 766–776.

    CAS  PubMed  Google Scholar 

  103. Wilting, S.M., van Boerdonk, R.A., and Henken, F.E., Methylation mediated silencing and tumor suppressive function of miR 124 in cervical cancer, Mol. Cancer, 2010, vol. 9, p. 167.

    PubMed Central  PubMed  Google Scholar 

  104. Bandres, E., Agirre, X., Bitarte, N., et al., Epigenetic regulation of microRNA expression in colorectal cancer, Int. J. Cancer, 2009, vol. 125, no. 11, pp. 2737–2743.

    CAS  PubMed  Google Scholar 

  105. Chen, X., Hu, H., Guan, X., et al., CpG island methylation status of miRNAs in esophageal squamous cell carcinoma, Int. J. Cancer, 2012, vol. 130, no. 7, pp. 1607–1613.

    CAS  PubMed  Google Scholar 

  106. Gebauer, K., Peters, I., Dubrowinskaja, N., et al., Hsa-mir-124-3 CpG island methylation is associated with advanced tumors and disease recurrence of patients with clear cell renal cell carcinoma, Br. J. Cancer, 2013, vol. 108, no. 1, pp. 131–138.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Peters, I., Dubrowinskaja, N., Abbas, M., et al., DNA methylation biomarkers predict progression-free and overall survival of metastatic renal cell cancer (mRCC) treated with antiangiogenic therapies, PLoS One, 2014, vol. 9, no. 3. e91440

    PubMed Central  PubMed  Google Scholar 

  108. Chen, X., Ruan, A., Wang, X., et al., miR-129-3p, as a diagnostic and prognostic biomarker for renal cell carcinoma, attenuates cell migration and invasion via downregulating multiple metastasis-related genes, J. Cancer. Res. Clin. Oncol., 2014, vol. 140, no. 8, pp. 1295–1304.

    CAS  PubMed  Google Scholar 

  109. Esquela Kerscher, A. and Slack, F.J., OncomirsmicroRNAs with a role in cancer, Nat. Rev. Cancer, 2006, vol. 6, no. 4, pp. 259–269.

    CAS  PubMed  Google Scholar 

  110. Lujambio, A. and Esteller, M., CpG island hypermethylation of tumor suppressor microRNAs in human cancer, Cell Cycle, 2007, vol. 6, no. 12, pp. 1455–1459.

    CAS  PubMed  Google Scholar 

  111. Toyota, M., Suzuki, H., Sasaki, Y., and Maruyama, R., Epigenetic silencing of microRNA 34b/c and B cell translocation gene 4 is associated with CpG island methylation in colorectal cancer, Cancer Res., 2008, vol. 68, no. 11, pp. 4123–4132.

    CAS  PubMed  Google Scholar 

  112. Hermeking, H., The miR 34 family in cancer and apoptosis, Cell Death. Differ., 2010, vol. 17, no. 2, pp. 193–199.

    CAS  PubMed  Google Scholar 

  113. Wu, J., Qian, J., Li, C., et al., miR-129 regulates cell proliferation by downregulating Cdk6 expression, Cell Cycle, 2010, vol. 9, no. 9, pp. 1809–1818.

    CAS  PubMed  Google Scholar 

  114. Huang, Y.W., Liu, J.C., Deatherage, D.E., et al., Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer, Cancer Res., 2009, vol. 69, no. 23, pp. 9038–9046.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Wan, H.Y., Guo, L.M., Liu, T., et al., Regulation of the transcription factor F kappaB1 by microRNA 9 in human gastric adenocarcinoma, Mol. Cancer, 2010, vol. 9, p. 16.

    PubMed Central  PubMed  Google Scholar 

  116. Rotkrua, P., Akiyama, Y., Hashimoto, Y., et al., miR 9 down-regulates CDX2 expression in gastric cancer cells, Int. J. Cancer, 2011, vol. 129, no. 11, pp. 2611–2620.

    CAS  PubMed  Google Scholar 

  117. Klimenko, O.V. and Shtilman, M.I., Transfection of Kasumi-1 cells with a new type of polymer carriers loaded with miR-155 and antago-miR-155, Cancer Gene Ther., 2013, vol. 20, no. 4, pp. 237–241.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Braga.

Additional information

Original Russian Text © E.A. Braga, D.S. Khodyrev, V.I. Loginov, I.V. Pronina, V.N. Senchenko, A.A. Dmitriev, A.A. Kubatiev, N.E. Kushlinskii, 2015, published in Genetika, 2015, Vol. 51, No. 6, pp. 668–684.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, E.A., Khodyrev, D.S., Loginov, V.I. et al. Methylation in the regulation of the expression of chromosome 3 and microRNA genes in clear-cell renal cell carcinomas. Russ J Genet 51, 566–581 (2015). https://doi.org/10.1134/S1022795415050026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415050026

Keywords

Navigation