Skip to main content
Log in

CYP2D6, CYP3A5, and CYP3A4 gene polymorphisms in Russian, Tatar, and Bashkir populations

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The allele and genotype frequency distribution at polymorphic loci rs3892097 (184G>A) of CYP2D6 gene, rs776746 (6986A>G) of the CYP3A5 gene and rs2740574 (−392A>G) of the CYP3A4 gene in Russians, Tatars, and Bashkirs was examined. Samples were taken from residents of Bashkortostan Republic (1240 men and women aged from 20 to 109 years and consisted of 443 Russians, 517 Tatars, and 280 Bashkirs). Allele identification was conducted using PCR-RFLP or PCR with TaqMan probes. The “nonfunctional” allele rs3892097*A of the CYP2D6 gene was detected in populations of Russians, Tatars, and Bashkirs in 17.2, 9.5, and 7.1% cases, respectively. The rs776746*G allele of the CYP3A5 gene encoding the CYP3A5 isoenzyme with decreased activity was revealed with a frequency of 94.6% in populations of Russians, 94.3% in the Tatar population, and 91.5% in the Bashkir population. The share of the minor allele rs2740574*G of the CYP3A4 was 4.0% in populations of Russians, 0.5% in the Tatar population, and 0.9% in the Bashkir population. It has been previously shown that the rs3892097*A, rs776746*G, and rs2740574*G allele frequencies vary significantly in different world populations. Since allele variants of CYP2D6, CYP3A5, and CYP3A4 genes can play essential role in interindividual and in interethnic differences in the metabolism of many therapeutic agents, the obtained results could be used in the prognosis of pharmacotherapy efficacy in populations of Russians, Tatars, and Bashkirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alomar, M.J., Factors affecting the development of adverse drug reactions, Saudi Pharm. J., 2014, vol. 22, no. 2, pp. 83–94.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Piruzyan, A.L., Pharmacogenetics: the way to individual therapy, Eksp. Klin. Farmakol., 2005, no. 5, pp. 59–67.

    Google Scholar 

  3. Wilke, R.A. and Dolan, M.E., Genetics and variable drug response, JAMA, 2011, vol. 306, no. 3, pp. 306–307. doi 10.1001/jama.2011.998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Holmes, M.V., Shah, T., Vickery, C., et al., Fulfilling the promise of personalized medicine? Systematic review and field synopsis of pharmacogenetic studies, PLoS One, 2009, vol. 4, no. 12. e7960. doi 10.1371/journal.pone.0007960

    Article  PubMed Central  PubMed  Google Scholar 

  5. Daar, A.S. and Singer, P.A., Pharmacogenetics and geographical ancestry: implications for drug development and global health, Nat. Rev. Genet., 2005, vol. 6, no. 3, pp. 241–246.

    Article  CAS  PubMed  Google Scholar 

  6. Makeeva, O., Stepanov, V., Puzyrev, V., et al., Global pharmacogenetics: genetic substructure of Eurasian populations and its effect on variants of drug-metabolizing enzymes, Pharmacogenomics, 2008, vol. 9, no. 7, pp. 847–868. doi 10.2217/14622416.9.7.847

    Article  CAS  PubMed  Google Scholar 

  7. Kantemirova, B.I. and Griganov, V.I., Ethnic polymorphism of P-450 cytochrome isozymes among children residing in Astrakhan region, Izv. Vyssh. Uchebn. Zaved., Povolzh. Reg., 2013, vol. 1, no. 25, pp. 9–16.

    Google Scholar 

  8. Korchagina, R.P., Osipova, L.P., Vavilova, N.A., et al., Polymorphisms of the GSTM1, GSTT1, and CYP2D6 xenobiotic biotransformation genes, which are possible risk markers of cancer in populations of indigenous ethnic groups and Russians of North Siberia, Russ. J. Genet.: Appl. Res., 2012, vol. 2, no. 1, pp. 7–17.

    Article  Google Scholar 

  9. Romodanovskii, D.P., Khapaev, B.A., Ignat’ev, I.V., et al., Frequencies the ‘slow’ allele variants of the genes coding isoenzymes of cytochrome P450 CYP2D6, CYP2C19, CYP2C9 in Karachays and Circassians, Biomeditsina, 2010, vol. 1, no. 2, pp. 33–37.

    Google Scholar 

  10. Gaikovitch, E.A., Cascorbi, I., Mrozikiewicz, P.M., et al., Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population, Eur. J. Clin. Pharmacol., 2003, vol. 59, no. 4, pp. 303–312.

    Article  CAS  PubMed  Google Scholar 

  11. Korytina, G., Kochetova, O., Akhmadishina, L., et al., Polymorphism of cytochrome P450 genes in three ethnic groups from Russia, Balkan. Med. J., 2012, vol. 29, pp. 252–260.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Zhou, S.F., Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I, Clin. Pharmacokinet., 2009, vol. 48, no. 11, pp. 689–723. doi 10.2165/11318030-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  13. Eichelbaum, M., Pharmacogenetics: current state after 30 years of research, Dtsch. Med. Wochenschr., 2013, vol. 138, no. 13, pp. 659–661. doi 10.1055/s-0032-1332927

    Article  CAS  PubMed  Google Scholar 

  14. Wang, B.S., Liu, Z., Xu, W.X., and Sun, S.L., CYP3A5*3 polymorphism and cancer risk: a metaanalysis and meta-regression, Tumour Biol., 2013, vol. 34, no. 4, pp. 2357–2366. doi 10.1007/s13277-013-0783-2

    Article  CAS  PubMed  Google Scholar 

  15. Sychev, D.A., Recommendations for the use of pharmacogenetic testing in clinical practice, Kach. Klin. Prakt., 2011, no. 1, pp. 3–10.

    Google Scholar 

  16. Assis, J., Pereira, D., and Medeiros, R., Influence of CYP3A4 genotypes in the outcome of serous ovarian cancer patients treated with first-line chemotherapy: implication of a CYP3A4 activity profile, Int. J. Clin. Exp. Med., 2013, vol. 6, no. 7, pp. 552–561.

    PubMed Central  PubMed  Google Scholar 

  17. Khavkin, A.I., Zhikhareva, N.S., and Drozdovskaya, N.V., Drug therapy for peptic ulcer disease in children, Lechashchii Vrach, 2006, no. 1, pp. 26–30.

    Google Scholar 

  18. Mathew, C.G., The isolation of high molecular weight eukaryotic DNA, Methods Mol. Biol., 1984, vol. 2, pp. 31–34.

    CAS  Google Scholar 

  19. van Schaik, R.H., van der Heiden, I.P., van den Anker, J.N., and Lindemans, J., CYP3A5 variant allele frequencies in Dutch Caucasians, Clin. Chem., 2002, vol. 48, pp. 1668–1671.

    PubMed  Google Scholar 

  20. Bozina, N., Granic, P., Lalic, Z., et al., Genetic polymorphisms of cytochromes P450: CYP2C9, CYP2C19 and CYP2D6 in Croatian population, Croat. Med. J., 2003, vol. 44, no. 4, pp. 425–428.

    PubMed  Google Scholar 

  21. Semiz, S., Dujic, T., Ostanek, B., et al., Analysis of CYP2C9*2, CYP2C19*2, and CYP2D6*4 polymorphisms in patients with type 2 diabetes mellitus, Bosn. J. Basic Med. Sci., 2011, vol. 10, no. 4, pp. 287–291.

    Google Scholar 

  22. Sachse, C., Brockmoller, J., Bauer, S., and Roots, I., Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences, Am. J. Hum. Genet., 1997, vol. 60, no. 2, pp. 284–295.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Tamminga, W.J., Wemer, J., Oosterhuis, B., et al., The prevalence of CYP2D6 and CYP2C19 genotypes in a population of healthy Dutch volunteers, Eur. J. Clin. Pharmacol., 2001, vol. 57, no. 10, pp. 717–722.

    Article  CAS  PubMed  Google Scholar 

  24. Dahl, M.L., Johansson, I., Palmertz, M.P., et al., Analysis of the CYP2D6 gene in relation to debrisoquin and desipramine hydroxylation in a Swedish population, Clin. Pharmacol. Ther., 1992, vol. 51, no. 1, pp. 12–17.

    Article  CAS  PubMed  Google Scholar 

  25. Arvanitidis, K., Ragia, G., Iordanidou, M., et al., Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population, Fundam. Clin. Pharmacol., 2007, vol. 21, no. 4, pp. 419–426.

    Article  CAS  PubMed  Google Scholar 

  26. Scordo, M.G., Caputi, A.P., D’Arrigo, C., et al., Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population, Pharmacol. Res., 2004, vol. 50, no. 2, pp. 195–200.

    Article  CAS  PubMed  Google Scholar 

  27. Falzoi, M., Pira, L., Lazzari, P., and Pani, L., Analysis of CYP2D6 allele frequencies and identification of novel SNPs and sequence variations in Sardinians, ISRN Genet., 2013, vol. 2013, pp. 1–10. http://dx.doi.org/10.5402/2013/204560

    Google Scholar 

  28. Menoyo, A., del Rio, E., and Baiget, M., Characterization of variant alleles of cytochrome CYP2D6 in a Spanish population, Cell. Biochem. Funct., 2006, vol. 24, no. 5, pp. 381–385.

    Article  CAS  PubMed  Google Scholar 

  29. Correia, C., Santos, P., Coutinho, A.M., and Vicente, A., Characterization of pharmacogenetically relevant CYP2D6 and ABCB1 gene polymorphisms in a Portuguese population sample, Cell. Biochem. Funct., 2009, vol. 27, pp. 251–255.

    Article  CAS  PubMed  Google Scholar 

  30. Van der Merwe, N., Bouwens, C.S., Pienaar, R., et al., CYP2D6 genotyping and use of antidepressants in breast cancer patients: test development for clinical application, Metab. Brain Dis., 2012, vol. 27, no. 3, pp. 319–326. doi 10.1007/s11011-012-9312-z

    Article  PubMed Central  PubMed  Google Scholar 

  31. Aynacioglu, A., Sachse, C., and Bozkurt, A., Low frequency of defective alleles CYP2C19 and 2D6 in the Turkish population, Clin. Pharmacol. Ther., 1999, vol. 66, pp. 185–192.

    Article  CAS  PubMed  Google Scholar 

  32. Qumsieh, R.Y., Ali, B.R., Abdulrazzaq, Y.M., et al., Identification of new alleles and the determination of alleles and genotypes frequencies at the CYP2D6 gene in Emiratis, PLoS One, 2011, vol. 6, no. 12. e28943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. McLellan, R.A., Oscarson, M., Seidegard, J., et al., Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians, Pharmacogenetics, 1997, vol. 7, no. 3, pp. 187–191.

    Article  CAS  PubMed  Google Scholar 

  34. Nishida, Y., Fukuda, T., Yamamoto, I., and Azuma, J., CYP2D6 genotypes in a Japanese population: low frequencies of CYP2D6 gene duplication but high frequency of CYP2D6*10, Pharmacogenetics, 2000, vol. 10, no. 6, pp. 567–570.

    Article  CAS  PubMed  Google Scholar 

  35. Shengying, Q.S., Shen, L., Zhang, A., et al., Systematic polymorphism analysis of the CYP2D6 gene in four different geographical Han populations in mainland China, Genomics, 2008, vol. 92, no. 3, pp. 152–158.

    Article  Google Scholar 

  36. Lim, J.S.L., Chen, X.A., Singh, O., et al., Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients, Br. J. Clin. Pharmacol., 2011, vol. 71, pp. 737–750.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Chamnanphon, M., Pechatanan, K., Sirachainan, E., et al., Association of CYP2D6 and CYP2C19 polymorphisms and disease-free survival of Thai post-menopausal breast cancer patients who received adjuvant tamoxifen, Pharmgenomics Pers. Med., 2013, vol. 6, pp. 37–48. doi 10.2147/PGPM.S42330

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Wan, Y.J., Poland, R.E., Han, G., et al., Analysis of the CYP2D6 gene polymorphism and enzyme activity in African-Americans in Southern California, Pharmacogenetics, 2001, vol. 11, no. 6, pp. 489–499.

    Article  CAS  PubMed  Google Scholar 

  39. Aklillu, E., Persson, I., Bertilsson, L., et al., Frequent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles, J. Pharmacol. Exp. Ther., 1996, vol. 278, no. 1, pp. 441–446.

    CAS  PubMed  Google Scholar 

  40. Wennerholm, A., Johansson, I., Massele, A.Y., et al., Decreased capacity for debrisoquine metabolism among black Tanzanians: analyses of the CYP2D6 genotype and phenotype, Pharmacogenetics, 1999, vol. 9, no. 6, pp. 707–714.

    Article  CAS  PubMed  Google Scholar 

  41. Hicks, J.K., Swen, J.J., Thorn, C.F., et al., Clinical pharmacogenetics implementation consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants, Clin. Pharmacol. Ther., 2013, vol. 93, no. 5, pp. 402–408. doi 10.1038/clpt.2013.2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sistonen, J., Sajantila, A., Lao, O., et al., CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure, Pharmacogenet. Genomics, 2007, vol. 17, pp. 93–101.

    CAS  PubMed  Google Scholar 

  43. Ingelman-Sundberg, M., Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity, Pharmacogenomics J, 2005, vol. 5, no. 1, pp. 6–13.

    Article  CAS  PubMed  Google Scholar 

  44. Adler, G., Łoniewska B., Parczewski, M., et al., Frequency of common CYP3A5 gene variants in healthy Polish newborn infants, Pharmacol. Rep., 2009, vol. 61, no. 5, pp. 947–951.

    Article  CAS  PubMed  Google Scholar 

  45. Jakovski, K., Kapedanovska-Nestorovska, A., Labacevski, N., and Dimovski, A., Frequency of the most common CYP3A5 polymorphisms in the healthy population of the Republic of Macedonia, Maced. Pharm. Bull., 2012, vol. 58, nos. 1-2, pp. 25–30.

    Google Scholar 

  46. Dally, H., Bartsch, H., Jäger, B., et al., Genotype relationships in the CYP3A locus in Caucasians, Cancer Lett., 2004, vol. 207, pp. 95–99.

    Article  CAS  PubMed  Google Scholar 

  47. Vaarala, M.H., Mattila, H., Ohtonen, P., et al., The interaction of CYP3A5 polymorphisms along the androgen metabolism pathway in prostate cancer, Int. J. Cancer, 2008, vol. 122, pp. 2511–2516.

    Article  CAS  PubMed  Google Scholar 

  48. Hilli, J., Rane, A., Lundgren, S., et al., Genetic polymorphism of cytochrome P450s and P-glycoprotein in the Finnish population, Fundam. Clin. Pharmacol., 2007, vol. 21, pp. 379–386.

    Article  CAS  PubMed  Google Scholar 

  49. Mirghani, R.A., Sayi, J., Aklillu, E., et al., CYP3A5 genotype has significant effect on quinine 3-hydroxylation in Tanzanians, who have lower total CYP3A activity than a Swedish population, Pharmacogenet. Genomics, 2006, vol. 16, no. 9, pp. 637–645.

    Article  CAS  PubMed  Google Scholar 

  50. King, B.P., Leathart, J.B.S., Mutch, E., et al., CYP3A5 phenotype-genotype correlations in a British population, Br. J. Clin. Pharmacol., 2003, vol. 55, pp. 625–629.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Quaranta, S., Chevalier, D., Allorge, D., et al., Ethnic differences in the distribution of CYP3A5 gene polymorphisms, Xenobiotica, 2006, vol. 14, no. 12, pp. 1191–1200. doi 10.1080/00498250600944300

    Article  Google Scholar 

  52. Turolo, S., Tirelli, A.S., Ferraresso, M., et al., Frequencies and roles of CYP3A5, CYP3A4 and ABCB1 single nucleotide polymorphisms in Italian teenagers after kidney transplantation, Pharmacol. Rep., 2010, vol. 62, pp. 1159–1169.

    Article  CAS  PubMed  Google Scholar 

  53. Gervasini, G., Vizcaino, S., Gasiba, C., et al., Differences in CYP3A5*3 genotype distribution and combinations with other polymorphisms between Spaniards and other Caucasian populations, Ther. Drug Monit., 2005, vol. 27, pp. 819–821.

    Article  CAS  PubMed  Google Scholar 

  54. Kuehl, P., Zhang, J., Lin, Y., et al., Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression, Nat. Genet., 2001, vol. 27, pp. 383–391.

    Article  CAS  PubMed  Google Scholar 

  55. Suarez-Kurtz, G., Vargens, D.D., Santoro, A.B., et al., Global pharmacogenomics: distribution of CYP3A5 polymorphisms and phenotypes in the Brazilian population, PLoS One, 2014, vol. 9, no. 1. e83472. doi 10.1371/journal.pone.0083472

    Article  PubMed Central  PubMed  Google Scholar 

  56. Bains, R.K., Kovacevic, M., Plaster, C.A., et al., Molecular diversity and population structure at the cytochrome P450 3A5 gene in Africa, BMC Genet., 2013, vol. 14, no. 34, pp. 1–18. doi 10.1038/clpt.2013.2

    Google Scholar 

  57. Li, D., Zhang, G.L., Lou, Y.Q., et al., Genetic polymorphisms in MDR1 and CYP3A5 and MDR1 haplotype in mainland Chinese Han, Uygur and Kazakh ethnic groups, J. Clin. Pharm. Ther., 2007, vol. 32, no. 1, pp. 89–95.

    Article  PubMed  Google Scholar 

  58. Lee, J.S., Cheong, H.S., Kim, L.H., et al., Screening of genetic polymorphisms of CYP3A4 and CYP3A5 genes, Korean. J. Physiol. Pharmacol., 2013, vol. 17, no. 6, pp. 479–484. doi 10.4196/kjpp.2013.17.6.479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Hiratsuka, M., Takekuma, Y., Endo, N., et al., Allele and genotype frequencies of CYP2B6 and CYP3A5 in the Japanese population, Eur. J. Clin. Pharmacol., 2002, vol. 58, no. 6, pp. 417–421.

    Article  CAS  PubMed  Google Scholar 

  60. Hu, Y.F., He, J., Chen, G.L., et al., CYP3A5*3 and CYP3A4*18 single nucleotide polymorphisms in a Chinese population, Clin. Chim. Acta, 2005, vol. 353, nos. 1-2, pp. 187–192.

    Article  CAS  PubMed  Google Scholar 

  61. Supanya, D., Tassaneeyakul, W., Sirivongs, D., et al., Prevalence of CYP3A5 polymorphism in a Thai population, Thai J. Pharmacal., 2009, vol. 31, no. 1, pp. 95–97.

    Google Scholar 

  62. Plummer, S.J., Conti, D.V., Paris, P.L., et al., CYP3A4 and CYP3A5 genotypes, haplotypes, and risk of prostate cancer, Cancer Epidemiol. Biomark. Prev., 2003, vol. 12, pp. 928–932.

    CAS  Google Scholar 

  63. Rozales, A., Pacheco, A., Cuevas, A., et al., Frequency of common variants in genes involved in lipid-lowering response to statins in Chilean subjects with hypercholesterolemia, Int. J. Morphol., 2011, vol. 29, no. 4, pp. 1296–1302.

    Article  Google Scholar 

  64. Li, J., Zhang, L., Zhou, H., et al., Global patterns of genetic diversity and signals of natural selection for human ADME genes, Hum. Mol. Genet., 2011, vol. 20, no. 3, pp. 528–540. doi 10.1093/hmg/ddq498

    Article  CAS  PubMed  Google Scholar 

  65. Suarez-Kurtz, G., Perini, J.A., Bastos-Rodrigues, L., et al., Impact of population admixture on the distribution of the CYP3A5*3 polymorphism, Pharmacogenomics, 2007, vol. 8, pp. 1299–1306.

    Article  CAS  PubMed  Google Scholar 

  66. Thompson, E.E., Kuttab-Boulos, H., Witonsky, D., et al., CYP3A variation and the evolution of salt-sensitivity variants, Am. J. Hum. Genet., 2004, vol. 75, pp. 1059–1069.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Bochud, M., Bovet, P., Burnier, M., and Eap, C.B., CYP3A5 and ABCB1 genes and hypertension, Pharmacogenomics, 2009, vol. 10, pp. 477–487.

    Article  CAS  PubMed  Google Scholar 

  68. Roco, A., Quñiones, L., Agúndez, J.A.G., et al., Frequencies of 23 functionally significant variant alleles related with metabolism of antineoplastic drugs in the Chilean population: comparison with Caucasian and Asian populations, Front. Genet., 2012, vol. 3, pp. 1–9. doi 10.3389/fgene.2012.00229

    Article  Google Scholar 

  69. Anglicheau, D., Legendre, C., Beaune, P., and Thervet, E., Cytochrome P450 3A polymorphisms and immunosuppressive drugs: an update, Pharmacogenomics, 2007, vol. 8, no. 7, pp. 835–849. doi 10.2217/14622416.8.7.835

    Article  CAS  PubMed  Google Scholar 

  70. Ociepa-Zawal, M., Rubi, B., Filas, V., et al., Studies on CYP1A1, CYP1B1 and CYP3A4 gene polymorphisms in breast cancer patients, Ginekol. Pol., 2009, vol. 80, no. 11, pp. 819–823.

    PubMed  Google Scholar 

  71. Tayeb, M.T., Clark, C., Ameyaw, M.M., et al., CYP3A4 promoter variant in Saudi, Ghanaian and Scottish Caucasian populations, Pharmacogenetics, 2000, vol. 10, no. 8, pp. 753–756.

    Article  CAS  PubMed  Google Scholar 

  72. Ball, S.E., Scatina, J., Kao, J., et al., Population distribution and effects on drug metabolism of a genetic variant in the 59 promoter region of CYP3A4, Clin. Pharmacol. Ther., 1999, vol. 66, pp. 288–294.

    Article  CAS  PubMed  Google Scholar 

  73. Fernandez, P., Zeigler-Johnson, C.M., Spangler, E., et al., Androgen metabolism gene polymorphisms, associations with prostate cancer risk and pathological characteristics: a comparative analysis between South African and Senegalese men, Prostate Cancer, 2012, vol. 2012, pp. 1–8. doi 10.1155/2012/798634

    Article  Google Scholar 

  74. Sayutoulu, M.A., Yildiz, I., Hatirnaz, O., and Ozbek, U., Common cytochrome p4503A (CYP3A4 and CYP3A5) and thiopurine S-methyl transferase (TPMT) polymorphisms in Turkish population, Turkish J. Med. Sci., 2006, vol. 36, no. 1, pp. 11–15.

    Google Scholar 

  75. Yousef, A.M., Bulatova, N.R., Newman, W., et al., Allele and genotype frequencies of the polymorphic cytochrome P450 genes (CYP1A1, CYP3A4, CYP3A5, CYP2C9 and CYP2C19) in the Jordanian population, Mol. Biol. Rep., 2012, vol. 39, no. 10, pp. 9423–9433. doi 10.1007/s11033-012-1807-5

    Article  CAS  PubMed  Google Scholar 

  76. Veiga, M.I., Asimus, S., Ferreira, P.E., et al., Pharmacogenomics of CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4, CYP3A5 and MDR1 in Vietnam, Eur. J. Clin. Pharmacol., 2009, vol. 65, no. 4, pp. 355–363.

    Article  CAS  PubMed  Google Scholar 

  77. Sata, F., Sapone, A., Elizondo, G., et al., CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity, Clin. Pharmacol. Ther., 2000, vol. 67, no. 1, pp. 48–56.

    Article  CAS  PubMed  Google Scholar 

  78. Walker, A.H., Jaffe, J.M., Gunasegaram, S., et al., Characterization of an allelic variant in the nifedipinespecific element of CYP3A4: ethnic distribution and implications for prostate cancer risk, Hum. Mutat., 1998, vol. 12, no. 4, p. 289.

    CAS  PubMed  Google Scholar 

  79. Roco, A., Quiñones, L., Agúndez, J.A.G., et al., Frequencies of 23 functionally significant variant alleles related with metabolism of antineoplastic drugs in the Chilean population: comparison with Caucasian and Asian populations, Front. Genet., 2012, vol. 3, p. 229. doi 10.3389/fgene.2012.00229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Rodriguez-Antona, C., Sayi, J.G., Gustafsson, L.L., et al., Phenotype-genotype variability in the human CYP3A locus as assessed by the probe drug quinine and analyses of variant CYP3A4 alleles, Biochem. Biophys. Res. Commun., 2005, vol. 338, pp. 299–305.

    Article  CAS  PubMed  Google Scholar 

  81. Wang, Z., Schuetz, E.G., Xu, Y., and Thummel, K.E., Interplay between vitamin D and the drug metabolizing enzyme CYP3A4, J. Steroid Biochem. Mol. Biol., 2013, vol. 136, pp. 54–58. doi 10.1016/j.jsbmb.2012.09.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Lindh, J.D., Andersson, M.L., Eliasson, E., and Björkhem-Bergman, L., Seasonal variation in blood drug concentrations and a potential relationship to vitamin D, Drug Metab. Dispos., 2011, vol. 39, no. 5, pp. 933–937. doi 10.1124/dmd.111.038125

    Article  CAS  PubMed  Google Scholar 

  83. Santos, A.M., Sousa, H., Portela, C., et al., TP53 and P21 polymorphisms: response to cisplatinum/paclitaxel-based chemotherapy in ovarian cancer, Biochem. Biophys. Res. Commun., 2006, vol. 340, pp. 256–262.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Mustafina.

Additional information

Original Russian Text © O.E. Mustafina, I.A. Tuktarova, D.D. Karimov, R.Sh. Somova, T.R. Nasibullin, 2015, published in Genetika, 2015, Vol. 51, No. 1, pp. 109–119.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafina, O.E., Tuktarova, I.A., Karimov, D.D. et al. CYP2D6, CYP3A5, and CYP3A4 gene polymorphisms in Russian, Tatar, and Bashkir populations. Russ J Genet 51, 98–107 (2015). https://doi.org/10.1134/S1022795415010081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415010081

Keywords

Navigation