Skip to main content
Log in

Allozyme variability and the population genetic structure of the mice Apodemus agrarius, Mus musculus, and Sylvaemus uralensis (Rodenita, Muridae) in Western Siberia

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Of the three mouse species inhabiting Western Siberia, the striped field mouse is characterized by the highest level of genetic variation, a uniform distribution of polymorphism indicators, lower values of genetic differentiation, and higher values of gene flow, as compared to the house mouse and pygmy wood mouse. The house mouse populations have abrupt changes in the parameters of protein polymorphism in different localities. This is due to the considerable spatial dissociation of the cities of Siberia and the differing histories of their settlement. Inhabitation of an urban area leads to the partitioning of striped wood mouse populations into groups that considerably differ in allele frequencies and genetic variation indices. These changes are not related to the degree of urbanization and are determined by genetic drift. Some characteristics of these groups, like reduced variability, heterozygote deficit, and deviation from the Hardy-Weinberg equilibrium, limit their adaptive potential and make them dependent on the populations of inter-settlement territories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frisman, L.V., Korobitsyna, K.V., Yakimenko, L.V., et al., Genetic variability and the origin of house mouse from the territory of Russia and neighboring countries, Russ. J. Genet., 2011, vol. 47, no. 5, pp. 590–602.

    Article  CAS  Google Scholar 

  2. Chelomina, G.N., Lesnye i polevye myshi: molekulyarno-geneticheskie osnovy evolyutsii i sistematiki (Wood and Field Mice: Molecular-Genetic Aspects of Evolution and Systematics), Vladivostok: Dal’nauka, 2005.

    Google Scholar 

  3. Kotenkova, E.V., Hybrid zones of house mice of genus Mus in Russia and neighboring countries: role of hybridization in evolution of commensal taxa, Russ. J. Teriol., 2004, vol. 3, no. 1, pp. 25–32.

    Google Scholar 

  4. Smadja, C., Catalan, J., and Ganem, G., Strong premating divergence in a unimodal hybrid zone between two subspecies of the house mouse, J. Evol. Biol., 2004, vol. 17, no. 1, pp. 165–176.

    Article  CAS  PubMed  Google Scholar 

  5. Teeter, K.C., Payseur, B.A., Harris, L.W., et al., Genome-wide patterns of gene flow across a house mouse hybrid zone, Genome Res., 2008, vol. 18, pp. 67–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Yakimenko, L.V., Cytogenetic and morphological differentiation in the process of evolution of mole voles (Cricetidae: Ellobius) and house mice (Muridae: Mus), Doctoral (Biol.) Dissertation, Vladivostok, 2003.

    Google Scholar 

  7. Maltsev, A.N., Role of invasions in formation of house mice population of Ishim and their taxonomic evaluation, Russ. J. Biol. Invasions, 2011, no. 3, pp. 7–14.

    Google Scholar 

  8. Milishnikov, A.N., Lavrenchenko, L.A., and Lebedev, V.S., Origin of the house mice (superspecies complex Mus musculus sensu lato) from the Transcaucasia region: a new look at dispersal routes and evolution, Russ. J. Genet., 2004, vol. 40, no. 9, pp. 1011–1026.

    Article  CAS  Google Scholar 

  9. Demidovich, A.P., Anthropogenic transformation of rodent communities as a component of parasitic systems, Byull. Vost.-Sib. Nauchn. Tsentra Sib. Otd. Ross. Akad. Med. Nauk, 2006, vol. 48, no. 2, pp. 28–33.

    Google Scholar 

  10. Maurer, H.R., Disc Electrophoresis and Related Techniques of Polyacrylamide Gel Electrophoresis, Berlin: de Gruyter, 1971.

    Google Scholar 

  11. Korochkin, L.I., Serov, O.A., Pudovkin, A.I., et al., Genetika izofermentov (Genetics of Isozymes), Moscow: Nauka, 1977.

    Google Scholar 

  12. Yeh, F.C., Yang, R.C., and Boyle, T., POPGENE. Microsoft Windows-Based Freeware for Population Genetic Analysis: Release 1.31, Edmonton: Univ. Alberta, 1999. http://www.ualberta.ca/~fyeh/download.htm

    Google Scholar 

  13. Nei, M., Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics, 1978, vol. 89, pp. 583–590.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Google Scholar 

  15. McDermott, J.M. and McDonald, B.A., Gene flow in plant pathosystems, Annu. Rev. Phytopathol., 1993, vol. 31, pp. 353–373.

    Article  Google Scholar 

  16. Awasthi, M., Bhat, K.V., and Anand, R.K., Allozymic variation in four Indian species of genus Mus: a comparative analysis, J. Genet., 1999, vol. 78, no. 2, pp. 73–80.

    Article  CAS  Google Scholar 

  17. Darvish, D., Orth, A., and Bonhomme, F., Genetic transition in the house mouse Mus musculus of Eastern Iranian Plateau, Folia Zool., 2006, vol. 55, no. 4, pp. 349–357.

    Google Scholar 

  18. Mezhzherin, S.V. and Kotenkova, E.V., Biochemical systematics of house mice from the central Palearctic region, Z. Zool. Syst. Evol.-Forsch., 1992, vol. 30, pp. 180–188.

    Google Scholar 

  19. Mezhzherin, S.V., Genetic divergence of house and steppe mice, Genetika (Moscow), 1988, vol. 24, no. 12, pp. 2197–2202.

    CAS  PubMed  Google Scholar 

  20. Mezhzherin, S.V., Genetic differentiation and phylogenetic relationships among Palearctic mice (Rodentia, Muridae), Russ. J. Genet., 1997, vol. 33, no. 1, pp. 65–72.

    CAS  Google Scholar 

  21. Filippucci, M.-G., Macholan, M., and Michaux, J.R., Genetic variation and evolution in the genus Apodemus (Muridae: Rodentia), Biol. J. Linn. Soc., 2002, vol. 75, pp. 395–419.

    Article  Google Scholar 

  22. Atopkin, D.M., Bogdanov, A.S., and Chelomina, G.N., Genetic variation and differentiation in striped field mouse Apodemus agrarius inferred from RAPD-PCR analysis, Russ. J. Genet., 2007, vol. 43, no. 6, pp. 665–676.

    Article  CAS  Google Scholar 

  23. Colak, R., Colak, E., Yugit, N., et al., Morphometric and biochemical variation and the distribution of the genus Apodemus (Mammalia: Rodentia) in Turkey, Acta Zool. Acad. Sci. Hung., 2007, vol. 53, no. 3, pp. 239–256.

    Google Scholar 

  24. Lavrenchenko, L.A. and Likhnova, O.P., Allozyme and morphological variation of three species of forest mice (Rodentia, Muridae, Apodemus) in Dagestan under symbiotopic conditions, Zool. Zh., 1995, vol. 74, no. 5, pp. 107–119.

    Google Scholar 

  25. Mezhzherin, S.V., Boeskorov, G.G., and Vorontsov, N.N., Genetic relationships of European and Caucasian mice of the genus Apodemus Kaup, Genetika (Moscow), 1992, vol. 28, no. 11, pp. 111–121.

    CAS  PubMed  Google Scholar 

  26. Mezhzherin, S.V., Allozyme variation and genetic divergence of mice of the subgenus Sylvaemus (Ognev et Vorobiev), Genetika (Moscow), 1990, vol. 26, no. 6, pp. 1046–1054.

    Google Scholar 

  27. Modorov, M.V., Ecological and genetic characteristics of Apodemus uralensis in the area of the East Ural Radioactive Trace, Cand. Sci. (Biol.) Dissertation, Yekaterinburg, 2009.

    Google Scholar 

  28. Berry, R.J., Peters, J., and Van Aarde, R.J., Sub-Antarctic house mice: colonization, survival and selection, J. Zool. (London), 1978, vol. 184, pp. 127–141.

    Article  Google Scholar 

  29. Makarieva, A.M., Variance of protein heterozygosity in different species of mammals with respect to the number of loci studied, Heredity, 2001, vol. 87, no. 1, pp. 41–51.

    Article  CAS  PubMed  Google Scholar 

  30. Mezhzherin, S.V., Correlation between genetic variability and body size in vertebrates, Russ. J. Genet., 2002, vol. 38, no. 9, pp. 1060–1065.

    Article  CAS  Google Scholar 

  31. Frisman, L.V., Speciation and systematics of rodents (Rodentia: Sciuridae, Cricetidae, Muridae) inferred from allozyme data, Doctoral (Biol.) Dissertation, Vladivostok, 2008.

    Google Scholar 

  32. Zhigileva, O.N., Levels of genetic variability and helminthic infections in populations of small mammals, Vestn. Tyumen Gos. Univ., 2003, no. 2, pp. 29–32.

    Google Scholar 

  33. Zhigileva, O.N., Correlation between biodiversity indices of small mammals and their helminthes in ecosystems of West Siberia, Contemp. Probl. Ecol., 2011, no. 4, pp. 416–422.

    Google Scholar 

  34. Zhigileva, O.N., Helminthic fauna of mice (Apodemus agrarius, Mus musculus) in residential and inter-residential territories in Western Siberia, Povolzh. Ekol. Zh., 2013, no. 2, pp. 156–163.

    Google Scholar 

  35. Timoshenko, P.V. and Zhigileva, O.N., Biological diversity of rodents and their helminths in reserve “Rafaylovsky” and the town of Tyumen, Vestn. Ekol., Lesoved. Landshaftoved., 2006, no. 7, pp. 78–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Zhigileva.

Additional information

Original Russian Text © O.N. Zhigileva, 2014, published in Genetika, 2014, Vol. 50, No. 8, pp. 950–958.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhigileva, O.N. Allozyme variability and the population genetic structure of the mice Apodemus agrarius, Mus musculus, and Sylvaemus uralensis (Rodenita, Muridae) in Western Siberia. Russ J Genet 50, 838–845 (2014). https://doi.org/10.1134/S1022795414080122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414080122

Keywords

Navigation