Skip to main content

Advertisement

Log in

Coordinated aberrant expression of miRNAs in colon cancer

  • Human Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Applying the method of multiple parallel sequencing on the MiSeq platform (Illumina, United States), a comparative analysis of miRNA expression in tumor and normal colon tissue cells was performed. Forty miRNAs aberrantly expressed in cancer were detected. Among them, 15 and 25 miRNAs showed increased and decreased expression, respectively, for all or most of the cases. Sixteen miRNA clusters were identified, which showed a coordinated or incompletely coordinated aberrant expression in colorectal cancer cells. In two (miR-183/182 and miR-106b/25) and four (miR-143/145, miR-497/195, miR-30e/30c-1, and miR-30a/30c-2) miRNA clusters, respectively, a statistically significant coordinated increase or decrease in expression was registered for all miRNAs within the corresponding cluster. Three aberrantly expressed well-known miRNAs (miR-100-5p, miR-30d-5p, and miR-204-5p) were identified, which, however, had never before been associated with colorectal cancer. The obtained results demonstrate the potential and promising application of 6 miRNA clusters with coordinated aberrant expression as markers for colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolff, M.S. and Weston, A., Breast cancer risk and environmental exposures, Environ. Health Perspect., 1997, vol. 105,suppl. 4, pp. 891–896.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Vogelstein, B. and Kinzler, K.W., The multistep nature of cancer, Trends Genet., 1993, vol. 9, no. 4, pp. 138–141.

    Article  PubMed  CAS  Google Scholar 

  3. Sherr, C.J., Principles of tumor suppression, Cell, 2004, vol. 116, no. 2, pp. 235–246.

    Article  PubMed  CAS  Google Scholar 

  4. Jones, P.A. and Baylin, S.B., The epigenomics of cancer, Cell, 2007, vol. 128, no. 4, pp. 683–692.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Ehrlich, M., DNA hypomethylation in cancer cells, Epigenomics, 2009, vol. 1, no. 2, pp. 239–259.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Zardo, G., Ciolfi, A., Vian, L., et al., Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression, Blood, 2012, vol. 119, no. 17, pp. 4034–4046.

    Article  PubMed  CAS  Google Scholar 

  7. Benhamed, M., Herbig, U., Ye, T., et al., Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells, Nat. Cell Biol., 2012, vol. 14, no. 3, pp. 266–275.

    Article  PubMed  CAS  Google Scholar 

  8. Griffiths-Jones, S., Hui, J.H., Marco, A., and Ronshaugen, M., MicroRNA evolution by arm switching, EMBO Rep., 2011, vol. 12, no. 2, pp. 172–177.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Calin, G.A., Dumitru, C.D., Shimizu, M., et al., Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 24, pp. 15524–15529.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction, Anal. Biochem., 1987, vol. 162, pp. 156–159.

    Article  PubMed  CAS  Google Scholar 

  11. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Laboratory, 1982.

    Google Scholar 

  12. Robinson, M.D., McCarthy, D.J., and Smyth, G.K., edgeR: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 2010, vol. 26, pp. 139–140.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Robinson, M.D. and Oshlack, A., A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biol., 2010, vol. 11, p. R25.

    Article  Google Scholar 

  14. McCarthy, D.J., Chen, Y., and Smyth, G.K., Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation, Nucleic Acids Res., 2012, vol. 40, pp. 4288–4297.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Robinson, M.D. and Smyth, G.K., Small sample estimation of negative binomial dispersion, with applications to SAGE data, Biostatistics, 2008, vol. 9, pp. 321–332.

    Article  PubMed  Google Scholar 

  16. Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc., 1995, vol. 57, no. 1, pp. 289–300.

    Google Scholar 

  17. Kozomara, A. and Griffiths-Jones, S., MiRBase: integrating microRNA annotation and deep-sequencing data, Nucleic Acids Res., 2011, vol. 39, pp. D152–D157.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Papagiannakopoulos, T., Shapiro, A., and Kosik, K.S., MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells, Cancer Res., 2008, vol. 68, no. 19, pp. 8164–8172.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, F.E., Zhang, C., Maminishkis, A., et al., MicroRNA-204/211 alters epithelial physiology, FASEB J., 2010, vol. 24, no. 5, pp. 1552–1571.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Abdelmohsen, K., Hutchison, E.R., Lee, E.K., et al., MiR-375 inhibits differentiation of neurites by lowering HuD levels, Mol. Cell Biol., 2010, vol. 30, no. 17, pp. 4197–4210.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Mohamed, J.S., Lopez, M.A., and Boriek, A.M., Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β, J. Biol. Chem., 2010, vol. 285, no. 38, pp. 29336–29347.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Zhang, X., Li, M., and Zuo, K., et al., Upregulated miR-155 in papillary thyroid carcinoma promotes tumor growth by targeting APC and activating WNT/β-catenin signaling, J. Clin. Endocrinol. Metab., 2013, vol. 98, no. 8, pp. E1305–E1313.

    Article  PubMed  CAS  Google Scholar 

  23. Nagel, R., le Sage, C., Diosdado, B., et al., Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer, Cancer Res., 2008, vol. 68, no. 14, pp. 5795–5802.

    Article  PubMed  CAS  Google Scholar 

  24. Dong, J., Zhao, Y.P., Zhou, L., et al., Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells, Arch. Med. Res., 2011, vol. 42, no. 1, pp. 8–14.

    Article  PubMed  CAS  Google Scholar 

  25. Song, J., Liu, P., Yang, Z., et al., MiR-155 negatively regulates c-Jun expression at the post-transcriptional level in human dermal fibroblasts in vitro: implications in UVA irradiation-induced photoaging, Cell. Physiol. Biochem., 2012, vol. 29, nos. 3–4, pp. 331–340.

    Article  PubMed  CAS  Google Scholar 

  26. Valeri, N., Gasparini, P., Fabbri, M., et al., Modulation of mismatch repair and genomic stability by miR-155, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 15, pp. 6982–6987.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Valeri, N., Gasparini, P., Braconi, C., et al., MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2), Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 49, pp. 21098–21103.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Zhang, Z., Florez, S., Gutierrez-Hartmann, A., et al., MicroRNAs regulate pituitary development, and microRNA 26b specifically targets lymphoid enhancer factor 1 (Lef-1), which modulates pituitary transcription factor 1 (Pit-1) expression, J. Biol. Chem., 2010, vol. 285, no. 45, pp. 34718–34728.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Calin, G.A., Cimmino, A., Fabbri, M., et al., MiR-15a and miR-16-1 cluster functions in human leukemia, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 13, pp. 5166–5171.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. He, L., Thomson, J.M., Hemann, M.T., et al., A microRNA polycistron as a potential human oncogene, Nature, 2005, vol. 435, no. 7043, pp. 828–833.

    Article  PubMed  CAS  Google Scholar 

  31. Valladares-Ayerbes, M., Blanco, M., Haz, M., et al., Prognostic impact of disseminated tumor cells and microRNA-17-92 cluster deregulation in gastrointestinal cancer, Int. J. Oncol., 2011, vol. 39, no. 5, pp. 1253–1264.

    PubMed  Google Scholar 

  32. Hayashita, Y., Osada, H., Tatematsu, Y., et al., A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation, Cancer Res., 2005, vol. 65, no. 21, pp. 9628–9632.

    Article  PubMed  CAS  Google Scholar 

  33. Conkrite, K., Sundby, M., Mukai, S., et al., MiR-17∼92 cooperates with RB pathway mutations to promote retinoblastoma, Genes Dev., 2011, vol. 25, no. 16, pp. 1734–1745.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Li, J., Fu, H., Xu, C., et al., MiR-183 inhibits TGF-beta1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells, BMC Cancer, 2010, vol. 10, p. 354.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu, S., Lu, Z., Liu, C., et al., MiRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer, Cancer Res., 2010, vol. 70, no. 14, pp. 6015–6025.

    Article  PubMed  CAS  Google Scholar 

  36. Hirata, H., Ueno, K., Shahryari, V., et al., Oncogenic miRNA-182-5p targets Smad4 and RECK in human bladder cancer, PLoS One, 2012, vol. 7, no. 11. e51056

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Yan, D., Dong, X.D., Chen, X., et al., Role of microRNA-182 in posterior uveal melanoma: regulation of tumor development through MITF, Bcl2 and cyclin D2, PLoS One, 2012, vol. 7, no. 7. e40967

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Smith, A.L., Iwanaga, R., Drasin, D.J., et al., The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer, Oncogene, 2012, vol. 31, no. 50, pp. 5162–5171.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Petrocca, F., Visone, R., Onelli, M.R., et al., E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer, Cancer Cell, 2008, vol. 13, no. 3, pp. 272–286.

    Article  PubMed  CAS  Google Scholar 

  40. Fang, L., Du, W.W., Yang, W., et al., MiR-93 enhances angiogenesis and metastasis by targeting LATS2, Cell Cycle, 2012, vol. 11, no. 23, pp. 4352–4365.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Kim, Y.K., Yu, J., Han, T.S., et al., Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer, Nucleic Acids Res., 2009, vol. 37, no. 5, pp. 1672–1681.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Lin, T., Dong, W., Huang, J., et al., MicroRNA-143 as a tumor suppressor for bladder cancer, J. Urol., 2009, vol. 181, no. 3, pp. 1372–1380.

    Article  PubMed  CAS  Google Scholar 

  43. Noguchi, S., Yasui, Y., Iwasaki, J., et al., Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways, Cancer Lett., 2013, vol. 328, no. 2, pp. 353–361.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang, J., Guo, H., Zhang, H., et al., Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene friend leukemia virus integration 1 gene, Cancer, 2011, vol. 117, no. 1, pp. 86–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Chen, Z., Zeng, H., Guo, Y., et al., MiRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc, J. Exp. Clin. Cancer Res., 2010, vol. 29, p. 151.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gregersen, L.H., Jacobsen, A.B., Frankel, L.B., et al., MicroRNA-145 targets YES and STAT1 in colon cancer cells, PLoS One, 2010, vol. 5, no. 1. e8836

    Article  PubMed  PubMed Central  Google Scholar 

  47. Luo, M., Shen, D., Zhou, X., et al., MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor, Surgery, 2013, vol. 153, no. 6, pp. 836–847.

    Article  PubMed  Google Scholar 

  48. Zheng, D., Radziszewska, A., and Woo, P., MicroRNA 497 modulates interleukin 1 signalling via the MAPK/ERK pathway, FEBS Lett., 2012, vol. 586, no. 23, pp. 4165–4172.

    Article  PubMed  CAS  Google Scholar 

  49. Li, D., Zhao, Y., Liu, C., et al., Analysis of miR-195 and miR-497 expression, regulation and role in breast cancer, Clin. Cancer Res., 2011, vol. 17, no. 7, pp. 1722–1730.

    Article  PubMed  CAS  Google Scholar 

  50. Hui, W., Yuntao, L., Lun, L., et al., MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1, PLoS One, 2013, vol. 8, no. 1. e54932

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Q.Q., Xu, H., Huang, M.B., et al., MicroRNA-195 plays a tumor-suppressor role in human glioblastoma cells by targeting signaling pathways involved in cellular proliferation and invasion, Neurooncol., 2012, vol. 14, no. 3, pp. 278–287.

    CAS  Google Scholar 

  52. Liu, L., Chen, L., Xu, Y., et al., MicroRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells, Biochem. Biophys. Res. Commun., 2010, vol. 400, no. 2, pp. 236–240.

    Article  PubMed  CAS  Google Scholar 

  53. Esposito, F., Tornincasa, M., Pallante, P., et al., Downregulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2, J. Clin. Endocrinol. Metab., 2012, vol. 97, no. 5, pp. E710–E718.

    Article  PubMed  CAS  Google Scholar 

  54. Xia, Y., Chen, Q., Zhong, Z., et al., Down-regulation of miR-30c promotes the invasion of non-small cell lung cancer by targeting MTA1, Cell. Physiol. Biochem., 2013, vol. 32, no. 2, pp. 476–485.

    Article  PubMed  CAS  Google Scholar 

  55. Zhong, M., Bian, Z., and Wu, Z., MiR-30a suppresses cell migration and invasion through downregulation of PIK3CD in colorectal carcinoma, Cell. Physiol. Biochem., 2013, vol. 31, nos. 2–3, pp. 209–218.

    Article  PubMed  CAS  Google Scholar 

  56. Hsu, S.D., Lin, F.M., Wu, W.Y., et al., MiRTarBase: a database curates experimentally validated microRNA-target interactions, Nucleic Acids Res., 2011, vol. 39, pp. D163–D169.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Chhabra, R., Dubey, R., and Saini, N., Cooperative and individualistic functions of the microRNAs in the mir-23a∼27a∼24-2 cluster and its implication in human diseases, Mol. Cancer, 2010, vol. 9, p. 232.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Buck, A.H., Perot, J., Chisholm, M.A., et al., Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection, RNA, 2010, vol. 16, no. 2, pp. 307–315.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Shi, B., Zhu, M., Liu, S., and Zhang, M., Highly ordered architecture of microRNA cluster, Biomed. Res. Int., 2013, vol. 2013, p. 463168.

    PubMed  PubMed Central  Google Scholar 

  60. Chaulk, S.G., Thede, G.L., Kent, O.A., et al., Role of pri-miRNA tertiary structure in miR-17∼92 miRNA biogenesis, RNA Biol., 2011, vol. 8, no. 6, pp. 1105–1114.

    Article  PubMed  CAS  Google Scholar 

  61. Monteys, A.M., Spengler, R.M., Wan, J., et al., Structure and activity of putative intronic miRNA promoters, RNA, 2010, vol. 16, no. 3, pp. 495–505.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Petrocca, F., Vecchione, A., and Croce, C.M., Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling, Cancer Res., 2008, vol. 68, no. 20, pp. 8191–8194.

    Article  PubMed  CAS  Google Scholar 

  63. Yin, G., Chen, R., Alvero, A.B., et al., Twisting stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214, Oncogene, 2010, vol. 29, no. 24, pp. 3545–3553.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Kumar, P., Luo, Y., Tudela, C., et al., The c-Myc-regulated microRNA-17∼92 (miR-17⊃92) and miR-106a∼363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation, Mol. Cell. Biol., 2013, vol. 33, no. 9, pp. 1782–1796.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Bui, T.V. and Mendell, J.T., Myc: maestro of microRNAs, Genes Cancer, 2010, vol. 1, no. 6, pp. 568–575.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Zhao, Y. and Westphal, H., Homeobox genes and human genetic disorders, Curr. Mol. Med., 2002, vol. 2, no. 1, pp. 13–23.

    Article  PubMed  CAS  Google Scholar 

  67. Sato, F., Hatano, E., Kitamura, K., et al., MicroRNA profile predicts recurrence after resection in patients with hepatocellular carcinoma within the Milan criteria, PLoS One, 2011, vol. 6, no. 1. e16435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Lu, Y., Govindan, R., Wang, L., et al., MicroRNA profiling and prediction of recurrence/relapse-free survival in stage I lung cancer, Carcinogenesis, 2012, vol. 33, no. 5, pp. 1046–1054.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Ma, X., Kumar, M., Choudhury, S.N., et al., Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 25, pp. 10144–10149.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tarasov.

Additional information

Original Russian Text © V.A. Tarasov, D.G. Matishov, E.F. Shin, N.V. Boyko, N.N. Timoshkina, M.A. Makhotkin, A.M. Lomonosov, A.A. Kirpiy, O.I. Kit, A.Yu. Maximov, 2014, published in Genetika, 2014, Vol. 50, No. 10, pp. 1232–1244.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.A., Matishov, D.G., Shin, E.F. et al. Coordinated aberrant expression of miRNAs in colon cancer. Russ J Genet 50, 1090–1101 (2014). https://doi.org/10.1134/S1022795414080109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414080109

Keywords

Navigation