Skip to main content
Log in

The Morpho-Physiological and Nutritional Attributes of Common Bean (Phaseolus vulgaris L.) as Influenced by Mg Availability

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Magnesium (Mg) is a macronutrient that is necessary for both plant growth and health. It is involved in different metabolic processes, including photosynthesis, chlorophyll biosynthesis, and many enzymes in plant cells. The plant’s need for magnesium differs from one species to another. Advances in the understanding of common bean requirements for Mg and its relationships with the key metabolic reactions are an essential tool to improve Mg management in Tunisian agrosystems and identify useful markers for assisted breeding efforts. For this purpose, a greenhouse experiment was conducted on two common bean (Phaseolus vulgaris L.) cultivars (coco nain, CN, and coco blanc, CB) subjected to different Mg concentrations (0, 1, 2, 4, 6, and 8 mM). Plant growth, gas exchange, photosynthetic pigments, and Mg uptake and compartmentation are evaluated. The obtained results demonstrated that the optimal Mg concentration for maximum common bean growth and associated physiological functioning is 6 mM Mg. Below this concentration, plants suffer from Mg deficiency, while above this dose, plants are subjected to Mg toxicity. Photosynthetic pigments as well as photosynthesis are significantly hampered by Mg deficiency as well as toxicity while remaining strictly dependent on plant Mg content. The genotype CN showed better tolerance as compared to CB. It has a greater ability to remobilize Mg in deficient conditions, and its allocation to shoots allows it to maintain important metabolic functions. The calculated stress index (SI) clearly discriminated the studied genotypes and confirmed the tolerance of CN as compared to CB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Epstein, E. and Bloom, A.J., Mineral Nutrition of Plants: Principles and Perspectives, Sunderland: Sinauer Associates, 2005, 2nd ed.

    Google Scholar 

  2. Cakmak, I. and Yazici, A. M., Magnesium: A forgotten element in crop production, Better Crops, 2010, vol. 94, p. 23.

    Google Scholar 

  3. Senbayram, M., Gransee, A., Wahle, V., and Thiel, H., Role of magnesium fertilizers in agriculture: Plant-soil continuum, Crop Pasture Sci., 2015, vol. 66, p. 1219.  https://doi.org/10.1071/CP15104

    Article  CAS  Google Scholar 

  4. Maguire, M.E., and Cowan, J.A., Magnesium chemistry and biochemistry, Biometals, 2002, vol. 15, p. 203. https://doi.org/10.1023/A:1016058229972

    Article  CAS  PubMed  Google Scholar 

  5. Sánchez, P.A., Low-input technology for managing oxisols and ultisols in tropical america, Adv. Agron., 1981, vol. 34, p. 279. https://doi.org/10.1016/s0065-2113(08)60889-5

    Article  Google Scholar 

  6. Ouled Youssef, I. and Krouma, A., Functional dissection of magnesium nutrition and use efficiency in common bean, Agron. J., 2021, vol. 113, p. 261.https://doi.org/10.1002/agj2.20506

  7. Marschner, H., Nutrient availability in soils, Marschner’s Mineral Nutrition of Higher Plants, Marschner, P., Ed., New York: Academic, 2012, p. 71.

    Google Scholar 

  8. Tränkner, M., Tavakol, E., and Jákli, B., Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection, Physiol. Plant., 2018, vol. 163, p. 414. https://doi.org/10.1111/ppl.12747

    Article  CAS  Google Scholar 

  9. Mitchell, A.D., Loganathan, P., Payn, T.W., and Tillman, R.W., Effect of calcined magnesite on soil and Pinus radiata foliage magnesium in pumice soils of New Zealand, Aust. J. Soil Res., 1999, vol. 37, p. 545. https://doi.org/10.1071/S98085

    Article  CAS  Google Scholar 

  10. Verbruggen, N. and Hermans, C., Physiological and molecular responses to magnesium nutritional imbalance in plants, Plant Soil, 2013, vol. 87, p. 368.https://doi.org/10.1007/s11104-013-1589-0

  11. Shaul, O., Magnesium transport and function in plants: The tip of the iceberg, Biometals, 2002, vol. 15, p. 309. https://doi.org/10.1023/A:1016091118585

    Article  CAS  PubMed  Google Scholar 

  12. Hermans, C., Bourgis, F., Faucher, M., Strasser, R. J., Delrot, S., and Verbruggen, N., Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves, Planta, 2005, vol. 220, p. 541.https://doi.org/10.1007/s00425-004-1376-5

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi, N.I. and Tanoi, K., Critical issues in the study of magnesium transport systems and magnesium deficiency symptoms in plants, Int. J. Mol. Sci., 2015, vol. 16, p. 23076. https://doi.org/10.3390/ijms160923076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cakmak, I., Hengeler, C., and Marschner, H., Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency, J. Exp. Bot., 1994, vol. 45, p. 1245. https://doi.org/10.1093/jxb/45.9.1245

    Article  CAS  Google Scholar 

  15. Ceylan, Y., Kutman, U.B., Mengutay, M., and Cakmak, I., Magnesium applications to growth medium and foliage affect the starch distribution, increase the grain size and improve the seed germination in wheat, Plant Soil, 2016, vol. 406, p. 145. https://doi.org/10.1007/s11104-016-2871-8

    Article  CAS  Google Scholar 

  16. Koch, M., Busse, M., Naumann, M., Jakli, B., Smit, I., Cakmak, I., Hermans, C., and Pawelzik, E., Differencial effects of varied potassium and magnesium nutrition on production and partitionning of photoassimilates in potato plants, Physiol. Plant., 2019, vol. 166, p. 921. https://doi.org/10.1111/ppl.12846

    Article  CAS  PubMed  Google Scholar 

  17. Jokanović, M.R., Jovićević, D., Tepić, A.N., and Vujičić, B.L., Suitability of some green pea (Pisum sativum L.) varieties for processing, Acta Period. Technol., 2006, vol. 37, p. 13. https://doi.org/10.2298/APT0637013J

  18. Farzadfar, S., Zarinkamar, F., and Hojati, M., Magnesium and manganese affect photosynthesis, essential oil composition and phenolic compounds of Tanacetum parthenium, Plant Physiol. Biochem., 2017, vol. 112, p. 207. https://doi.org/10.1016/j.plaphy.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  19. Arnon, D., Copper enzymes in isolated chloroplast. Polyphenoloxidase in Beta vulgarisPlant Physiol., 1949, vol. 24, p. 1. https://doi.org/10.1104/pp.24.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morales, F., Abadia, A., and Abadia, J., Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.), Plant Physiol., 1990, vol. 94, p. 607. https://doi.org/10.1104/pp.94.2.607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bao, S.D., Soil Agricultural Chemical Analysis, Beijing: China Agric. Press, 2000, 3rd ed., p. 265.

  22. Jaghdani, S.J., Jahnsb, P., and Tränknera, M., Mg deficiency induces photo-oxidative stress primarily by limiting CO2 assimilation and not by limiting photosynthetic light utilization, Plant Sci., 2021, vol. 302, p. e110751. https://doi.org/10.1016/j.plantsci.2020.110751

    Article  CAS  Google Scholar 

  23. Cakmak, I., and Kirby, E.A., Role of magnesium in carbon partitioning and alleviating photooxidative damage, Physiol. Plant., 2008, vol. 133, p. 692. https://doi.org/10.1111/j.1399-3054.2007.01042.x

    Article  CAS  PubMed  Google Scholar 

  24. Fischer, E.S. and Bremer, E., Influence of magnesium deficiency on rates of leaf expansion, starch and sucrose accumulation, and net assimilation in Phaseolus vulgaris, Physiol. Plant., 1993, vol. 89, p. 271. https://doi.org/10.1111/j.1399-3054.1993.tb00153.x

    Article  CAS  Google Scholar 

  25. Cakmak, I. and Kirkby, E.A., Role of magnesium nutrition in growth and stress tolerance, Proc. Int. Conference of Fertiliser Society, Cambridge, 2007.

  26. Karley, A.J. and White, P.J. Moving cationic minerals to edible tissues: Potassium, magnesium, calcium, Curr. Opin. Plant Biol., 2009, vol. 12, p. 291. https://doi.org/10.1016/j.pbi.2009.04.013

    Article  CAS  PubMed  Google Scholar 

  27. Smith, G.S., Cornforth, I.S., and Henderson, H.V., Critical leaf concentrations for deficiencies of nitrogen, potassium, phosphorus, sulphur, and magnesium in perennial ryegrass, New Phytol., 1985, vol. 101, p. 393.

    Article  CAS  PubMed  Google Scholar 

  28. Lavon, R., Salomon, R., and Goldschmidt, E.E., Effect of potassium, magnesium, and calcium deficiencies on nitrogen constituents and chloroplast components in citrus leaves, J. Am. Soc. Hortic. Sci., 1999, vol. 124, p. 158. https://doi.org/10.21273/JASHS.124.2.158

    Article  CAS  Google Scholar 

  29. Ayala-Silva, T. and Beyl, C.A., Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency, Adv. Space Res., 2005, vol. 3, p. 305. https://doi.org/10.1016/j.asr.2004.09.008

    Article  CAS  Google Scholar 

  30. Ceppi, M.G., Oukarroum, A., Çiçek., Strasser, R.J., and Schansker, G., The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: A study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress, Physiol. Plant., 2012, vol. 144, p. 277. https://doi.org/10.1111/j.1399-3054.2011.01549.x

    Article  CAS  PubMed  Google Scholar 

  31. Huang, H., Ullah, F., Zhou, D-X., Yi, M., and Zhao, Y., Mechanisms of ROS regulation of plant development and stress responses, Front. Plant Sci., 2019, vol. 10, p. 1. https://doi.org/10.3389/fpls.2019.00800

    Article  Google Scholar 

  32. Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schijoerring, J., Skrumsager, M., and White, P., Functions of macronutrients, Marschner’s Mineral Nutrition of Higher Plants, New York: Academic, 2012, p. 135.

    Book  Google Scholar 

  33. Taiz, L. and Zeiger, E., Photosynthesis: The light reactions, Plant Physiology, Sunderland: Sinauer Associates, 2010, p. 782.

  34. Kleczkowski, L.A. and Igamberdiev, A.U., Magnesium signaling in plants, Int. J. Mol. Sci., 2021, vol. 22, p. 1159. https://doi.org/10.3390/ijms22031159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hauer-Jákli, M. and Tränkner, M., Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: A systematic review and meta-analysis from 70 years of research, Front. Plant. Sci., vol. 10, p. 766. https://doi.org/10.3389/fpls.2019.00766

  36. Jezek, M., Geilfus, C.M. and Mühling, K.H., Glutamine synthetase activity in leaves of Zea mays L. as influenced by magnesium status, Planta, 2015, vol. 242, p. 1309. https://doi.org/10.1007/s00425-015-2371-8

    Article  CAS  PubMed  Google Scholar 

  37. Kumar, R.T., Kumar, P., Tewari, N., Srivastava, S., and Sharma, P.N., Macronutrient deficiencies and differential antioxidant responses—influence on the activity and expression of superoxide dismutase in maize, Plant Sci., 2004, vol. 166, p. 687. https://doi.org/10.1016/j.plantsci.2003.11.004

    Article  CAS  Google Scholar 

  38. Cowan, A.J., Structural and catalytic chemistry of magnesium dependent enzymes, Biometals, 2002, vol. 15, p. 225. https://doi.org/10.1023/A:1016022730880

    Article  CAS  PubMed  Google Scholar 

  39. Hermans, C. and Verbruggen, N., Physiological characterization of Mg deficiency in Arabidopsis thaliana, J. Exp. Bot., 2005, vol. 56, p. 2153. https://doi.org/10.1093/jxb/eri215

    Article  CAS  PubMed  Google Scholar 

  40. Bose, J., Babourina, O., Shabala, S., and Rengel, Z., Low pH and aluminium resistance in arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots, Plant Cell Physiol., 2013, vol. 54, p. 1093. https://doi.org/10.1093/pcp/pct064

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krouma.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviation: An, photosynthetic net activity; DW, dry weight; ET, evapotranspiration; gs, stomatal conductance; SI, stress index.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouled Youssef, I., Krouma, A. The Morpho-Physiological and Nutritional Attributes of Common Bean (Phaseolus vulgaris L.) as Influenced by Mg Availability. Russ J Plant Physiol 70, 153 (2023). https://doi.org/10.1134/S102144372360229X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S102144372360229X

Keywords:

Navigation