Skip to main content
Log in

Effects of Poly-γ-Glutamic Acid (γ-PGA) on Metabolites of Flue-Cured Tobacco Leaves Based on Metabolomics Analysis

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Poly-γ-glutamic acid(γ-PGA) is a water-soluble polyamino acid produced by microbial fermentation, which can be used as plant growth regulator and has great agricultural application prospects. To determine the effect of γ-PGA application on the metabolic substances in flue-cured tobacco leaves, the samples of tobacco leaves with and without γ-PGA application were collected, and the non-targeted metabolomics analysis was performed using liquid chromatography-mass spectrometry (LC-MS/MS). Compared with the control, 14 metabolites with substantial differences were detected in flue-cured tobacco leaves after γ-PGA application. Eight metabolites, mainly classified as organoheterocyclic compounds, were up-regulated and 6 metabolites, mainly classified as organic oxygenates, were down-regulated. The differential metabolites were enriched in multiple metabolic pathways, such as the biosynthesis of amino acids, mineral absorption, protein digestion and absorption, and carbon metabolism. The main enriched differential metabolites were proline, tryptophan, 3-Methyl-2-oxobutanoic acid, fumaric acid, and d-glucose. Therefore, γ-PGA application can affect the accumulation and transformation of carbon and nitrogen compounds in tobacco leaves, and regulate the process of carbon and nitrogen metabolism in tobacco leaf growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Shih, I.L. and Van, Y.T., The production of poly-(c-glutamic acid) from microorganisms and its various applications, Bioresour. Technol., 2001, vol. 79, p. 207. https://doi.org/10.1016/S0960-8524(01)00074-8

    Article  CAS  PubMed  Google Scholar 

  2. Ogunleye, A., Bhat, A., Irorere, V.U., Hill, D., Williams, C., and Radecka, I., Poly-glutamic acid: production, properties and applications, Microbiology, 2015, vol. 161, p. 3. https://doi.org/10.1099/mic.0.081448-0

    Article  CAS  Google Scholar 

  3. Meynell, G.G., and Meynell, E., The biosynthesis of poly d-glutamic acid, the capsular material of Bacillus anthracis, J. Gen. Microbiol., 1966, vol. 43, p. 119. https://doi.org/10.1099/00221287-43-1-119

    Article  CAS  PubMed  Google Scholar 

  4. Nagai, T., Koguchi, K., and Itoh, Y., Chemical analysis of poly-y-glutamic acid produced by plasmid-free Bacillus subtilis (natto): Evidence that plasmids are not involved in poly-y-glutamic acid production, J. Gen. Appl. Microbiol., 1997, vol. 43, p. 139.

    Article  CAS  PubMed  Google Scholar 

  5. Shih, I.L, Van, Y.T., and Sau, Y.Y., Antifreeze activities of poly(gamma-glutamic acid) produced by Bacillus licheniformis, Biotechnol. Lett., 2003, vol. 25, p. 1709.

    Article  CAS  PubMed  Google Scholar 

  6. Luo, Z., Guo, Y., Liu, J., Qiu, H., Zhao, M., Zou, W., and Li, S., Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives, Biotechnol. Biofuels, 2016, vol. 9, p. 134. https://doi.org/10.1186/s13068-016-0537-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu, X., Wang, M., Wang, Q.H., and Wang, X.M., Biosynthesis of polyglutamic acid and its application on agriculture, Adv. Mater. Res., 2011, vol. 183, p. 1219. https://doi.org/10.4028/www.scientific.net/AMR.183-185.1219

  8. Xu, Z., Wan, C., Xu, X., Feng, X., and Xu, H., Effect of poly (gamma-glutamic acid) on wheat productivity, nitrogen use efficiency and soil microbes, Soil Sci. Plant Nutr., 2013a, vol. 13, p. 744. https://doi.org/10.4067/S0718-95162013005000071

    Article  Google Scholar 

  9. Xu, Z.Q., Lei, P., Feng, X.H., Xu, X.J., Xu, H., Yang, H.B., and Tang, W.Q., Effect of poly (glutamic acid) on microbial community and nitrogen pools of soil, Acta Agric. Scand., Sect. B, 2013b, vol. 63, p. 657. https://doi.org/10.1080/09064710.2013.849752

    Article  CAS  Google Scholar 

  10. Shi, W.J., Yue, X.L., Liang, J.P., Wen, L.J., Li, J.K., Li, N., and Lu, Y.W., Poly-gamma-glutamic acid enhances the wheat yield, water use efficiency and soil physicochemical properties of the arid area in the Northwest China, Arch. Agron. Soil Sci., 2023, vol. 69, p. 2663. https://doi.org/10.1080/03650340.2023.2170363

    Article  CAS  Google Scholar 

  11. Inbaraj, B.S., Wang, J.S., Lu, J.F., Siao, F.Y., and Chen, B.H., Adsorption of toxic mercury(II)by an extracellular biopolymer poly(γ-glutamic acid), Bioresour. Technol., 2009, vol. 100, p. 200. https://doi.org/10.1016/j.biortech.2008.05.014

    Article  CAS  PubMed  Google Scholar 

  12. Sakamoto, S. and Kawase, Y., Adsorption capacities of poly-γ-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters, J. Environ. Radioact., 2016, vol. 165, p. 151. https://doi.org/10.1016/j.jenvrad.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  13. Funk, R., Fertilizers containing polyamino acid, U.S. Patent US2006/0236734A1, October 26, 2006.

  14. Guo, Z.F., Yang, N., Zhu, C.H., and Gan, L.J., Exogenously applied poly-γ-glutamic acid alleviates salt stress in wheat seedlings by modulating ion balance and the antioxidant system, Environ. Sci. Pollut. Res., 2017, vol. 24, p. 6592.

    Article  CAS  Google Scholar 

  15. Quan, J., Zheng, W., Tan, J., Li, Z., Wu, M., Hong, S.B., Zhao, Y., Zhu, Z., and Zang, Y., Glutamic acid and poly-γ-glutamic acid enhanced the heat resistance of Chinese cabbage (Brassica rapa L. ssp. pekinensis) by improving carotenoid biosynthesis, photosynthesis, and ROS signaling, Int. J. Mol. Sci., 2022, vol. 23, p. 11671. https://doi.org/10.3390/ijms231911671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu, Z.Q., Lei, P., Feng, X.H., Xu, X.J., Liang, J.F., Chi, B., and Xu, H., Calcium involved in the poly(γ-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism, Plant Physiol. Biochem., 2014, vol. 80, p. 144. https://doi.org/10.1016/j.plaphy.2014.03.036

    Article  CAS  PubMed  Google Scholar 

  17. Ribbenstedt, A., Ziarrusta, H., and Benskin, J.P., Development, characterization and comparisons of targeted and non-targeted metabolomics methods, PLoS One, 2018, vol. 13, p. e0207082. https://doi.org/10.1371/journal.pone.0207082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khakimov, B., Bak, S., and Engelsen, S.B., High-throughput cereal metabolomics: current analytical technologies, challenges and perspectives, J. Cereal Sci., 2014, vol. 59, p. 393. https://doi.org/10.1016/j.jcs.2013.10.002

    Article  CAS  Google Scholar 

  19. Yin, A., Jia, Y., Qiu, T., Min, G., Cheng, S., Wang, X., and Sun, Y., Poly-γ-glutamic acid improves the drought resistance of maize seedlings by adjusting the soil moisture and microbial community structure, Appl. Soil Ecol., 2018, vol. 129, p. 128.

    Article  Google Scholar 

  20. Wang, Q.J., Chen, S.W., Zhang, J.B., Sun, M., Liu, Z.D., and Yu, Z.N., Co-producing lipopeptides and poly-g-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweetpotato residues and its biocontrol and fertilizer synergistic effects, Bioresour. Technol., 2008, vol. 99, p. 3318e3323. https://doi.org/10.1016/j.biortech.2007.05.052

  21. Zhang, L., Yang, X.M., Gao, D.C., Wang, L.L., Li, J., Wei, Z.B., and Shi, Y.L., Effects of poly-γ-glutamic acid (γ-PGA) on plant growth and its distribution in a controlled plant-soil system, Sci. Rep., 2017, vol. 7, p. 6090. https://doi.org/10.1038/s41598-017-06248-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mitsui, K., David, F., Tienpont, B., Sandra, K., Ochiai, N., Tamura, H., and Sandra, P., Analysis of the reaction products from micro-vial pyrolysis of the mixture glucose/proline and of a tobacco leaf extract: Search for Amadori intermediates, J. Chromatogr. A, 2015, vol. 1422, p. 27. https://doi.org/10.1016/j.chroma.2015.10.021

    Article  CAS  PubMed  Google Scholar 

  23. Sivaraju, K., Reddy, D.D., Krishna, S.K., Rao, C.C., and Ravisankar, H., Evaluation of organic and inorganic fertilizers on chemical and biochemical quality constituents of Burley Tobacco, J. AgriSearch, 2021, vol. 8, p. 201. https://doi.org/10.21921/jas.v8i03.1663

    Article  Google Scholar 

  24. Li, Y.X., Liu, F.F., Sun, S.B., Xiang Y., Jiang X.B., and He, J.W., Metabolome of flue-cured tobacco is significantly affected by the presence of leaf stem, BMC Plant Biol., 2023, vol. 23, p. 89. https://doi.org/10.1186/s12870-023-04093-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, L., Zhang, XT., Ji, H.W., Wang, W.W., Liu, J., Wang, F., Xie, F.W., Yu, Y.J., Qin, Y.Q., and Wang, X.Y., Metabolic profiling of tobacco leaves at different growth stages or different stalk positions by gas chromatography–mass spectrometry, Ind. Crops Prod., 2018, vol. 116, p. 46. https://doi.org/10.1016/j.indcrop.2018.02.041

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank to the editor and anonymous reviewers for their suggestions that improved the quality of the article. This study was financially supported by the Science and Technology Project of China National Tobacco Corporation (110202102040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. H. Cheng or W. M. Wang.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Gao, J.M., Ren, X.H. et al. Effects of Poly-γ-Glutamic Acid (γ-PGA) on Metabolites of Flue-Cured Tobacco Leaves Based on Metabolomics Analysis. Russ J Plant Physiol 70, 140 (2023). https://doi.org/10.1134/S1021443723601647

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723601647

Keywords:

Navigation