Skip to main content
Log in

Alleviation of Drought Stress Effects in Two Rice (Oryza sativa L.) Cultivars by Foliar Application of Salicylic Acid

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

This study evaluated the alleviating effect of salicylic acid (SA) in two rice (Oryza sativa L.) cultivars differing in their tolerance to drought in the presence of PEG 6000-induced osmotic stress of 8 and 16%. The results revealed that foliar application with 0.25 mM SA considerably improved the growth parameters in DT and DS cultivars grown under drought. Concurrent with enhanced drought tolerance, the SA treatment showed a substantial increase in antioxidant enzyme activity and metabolite accumulation. Furthermore, PEG 6000-induced drought significantly upsurged the accumulation of hydrogen peroxide and hydroxyl radicals and enhanced the levels of protein carbonyl content. Interestingly, the SA foliar application also markedly declined ROS and protein carbonyl content under drought-stress conditions. These results indicated that the foliar application of salicylic acid proved to be effective in further boosting drought tolerance in DT and DS rice cultivars by overcoming the oxidative effects of drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Food and Agriculture Organization of the United Nations, in FAO Statistical Pocketbook 2015: World Food and Agriculture, Rome: FAO, 2015.

    Book  Google Scholar 

  2. Hasanuzzaman, M., Nahar, K., Gill, S.S., and Fujita, M., Drought stress responses in plants, oxidative stress, and antioxidant defense, in: Climate Change and Plant Abiotic Stress Tolerance, Tuteja, N. and Gill, S.S., Eds., Weinheim: Wiley-VCH Verlag GmbH&Co, 2013, vol. 9, p. 209. https://doi.org/10.1002/9783527675265.ch09

    Book  Google Scholar 

  3. Guntzer, F., Keller, C., and Meunier, J.D., Benefits of plant silicon for crops: a review, Agron. Sustain. Dev., 2012, vol. 32, p. 201. https://doi.org/10.1007/s13593-011-0039-8

    Article  Google Scholar 

  4. Bouman, B.A., Peng, S., Castaneda, A.R., and Visperas, R.M., Yield and water use of irrigated tropical aerobic rice systems, Agric. Water Manag., 2005, vol. 74, p. 87. https://doi.org/10.1016/j.agwat.2004.11.007

    Article  Google Scholar 

  5. Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M., Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions, J. Bot., 2012, vol. 2012, p. 217037. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  6. Bolwell, G.P., Bindschedler, L.V., Blee, K.A., Butt, V.S., Davies, D.R., Gardner, S.L., Gerrish, C., and Minibayeva, F., The apoplastic oxidative burst in response to biotic stress in plants: a three-component system, J. Exp. Bot., 2002, vol. 53, p. 1367. https://doi.org/10.1093/jexbot/53.372.1367

    Article  CAS  PubMed  Google Scholar 

  7. Apel, K. and Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signaling transduction, Annu. Rev. Plant Biol., 2004, vol. 55, p. 373. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  8. Asada, K., The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons, Annu. Rev. Plant Physiol., 1999, vol. 50, p. 601. https://doi.org/10.1146/annurev.arplant.50.1.601

    Article  CAS  Google Scholar 

  9. Das, K. and Roychoudhury, A., Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants, Front. Environ. Sci., 2014, vol. 2, p. 53. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  10. Enyedi, A.J., Yalpani, N., Silverman, P., and Raskin, I., Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus, PNAS, 1992, vol. 89, p. 2480. https://doi.org/10.1073/pnas.89.6.2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Molina, A., Bueno, P., Marín, M.C., Rodríguez-Rosales, M.P., Belver, A., Venema, K., and Donaire, J.P., Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl, New Phytol., 2002, vol. 156, p. 409. https://doi.org/10.1046/j.1469-8137.2002.00527.x

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Y., Sun, T., Sun, Y., Zhang, Y., Radojičić, A., Ding, Y., Tian, H., Huang, X., Lan, J., Chen, S., Orduna, A. R., Zhang, K., Jetter, R., Li, X., and Zhang, Y., Diverse roles of the salicylic acid receptors NPR1 and NPR3/ NPR4 in plant immunity, Plant Cell, 2020, vol. 32, p. 4002. https://doi.org/10.1105/tpc.20.00499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Taşgín, E., Atící, Ö., and Nalbantoğlu, B., Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves, Plant Growth Regul., 2003, vol. 4, p. 231. https://doi.org/10.1023/b:grow.0000007504.41476.c2

    Article  Google Scholar 

  14. Pál, M., Szalai, G., Horváth, E., Janda, T., and Páldi, E., Effect of salicylic acid during heavy metal stress, Acta Biol. Szeged., 2002, vol. 46, p. 119.

    Google Scholar 

  15. Allen, R.D., Dissection of oxidative stress tolerance using transgenic plants, Plant Physiol., 1995, vol. 107, p. 1049. https://doi.org/10.1104/pp.107.4.1049

  16. Borsani, O., Valpuesta, V., and Botella, M.A., Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings, Plant Physiol., 2001, vol. 126, p. 1024. https://doi.org/10.1104/pp.126.3.1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alonso-Ramírez, A., Rodríguez, D., Reyes, D., Jiménez, J.A., Nicolás, G., López-Climent, M., Gómez-Cadenas, A., and Nicolás, C., Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds, Plant Physiol., 2009, vol. 150, p. 1335. https://doi.org/10.1104/pp.109.139352

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dat, J.F., Lopez-Delgado, H., Foyer., C.H., and Scott, I.M., Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings, Plant Physiol., 1998, vol. 116, p. 1351. https://doi.org/10.1104/pp.116.4.1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Singh, B. and Usha, K., Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress, Plant Growth Regul., 2003, vol. 39, p. 137. https://doi.org/10.1023/A:1022556103536

  20. Michel, B.E. and Kaufmann, M.R., The osmotic potential of polyethylene glycol 6000, Plant Physiol., 1973, vol. 51, p. 914. https://doi.org/10.1104/pp.51.5.914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoagland, D.R. and Arnon, D.I., The water-culture method for growing plants without soil, Circ. - Calif. Agric. Exp. Stn., 1950, vol. 347, p. 1.

    Google Scholar 

  22. Sagisaka, S., The Occurrence of Peroxide in a Perennial Plant, Populus gelrica, Plant Physiol., 1976, vol. 57, p. 308. https://doi.org/10.1104/pp.57.2.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, Z.J., Zhang, X.L., Bai, J.G., Suo, B.X., Xu, P.L., and Wang, L., Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves, Sci. Hortic., 2009, vol. 121, p. 138. https://doi.org/10.1016/j.scienta.2009.01.032

    Article  CAS  Google Scholar 

  24. Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel, S., and Stadtman, E.R., Determination of carbonyl content in oxidatively modified proteins, Methods Enzymol., 1990, vol. 186, p. 464. https://doi.org/10.1016/0076-6879(90)86141-h

    Article  CAS  PubMed  Google Scholar 

  25. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, p. 248. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  26. Beauchamp, C. and Fridovich, I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, p. 276. https://doi.org/10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  27. Schaedle, M. and Bassham, J.A., Chloroplast Glutathione Reductase, Plant Physiol., 1977, vol. 59, p. 1011. https://doi.org/10.1104/pp.59.5.1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Griffith, O.W., Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine, Anal. Biochem., 1980, vol. 106, p. 207. https://doi.org/10.1016/0003-2697(80)90139-6

    Article  CAS  PubMed  Google Scholar 

  29. Ahmad, A., Aslam, Z., Naz, M., Hussain, S., Javed, T., Aslam, S., Raza, A., Ali, H.M., Siddiqui, M.H., Salem, M.Z., Hano, C., Shabbir, R., Ahmar, S., Saeed, T., and Jamal, M.A., Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture, PloS One., 2021, vol. 16, p. e0260556. https://doi.org/10.1371/journal.pone.0260556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghazi, D.A., Impact of Drought Stress on Maize (Zea mays) Plant in Presence or Absence of Salicylic Acid Spraying, J. Soil Sci. Agric. Eng., Mansoura Univ., 2017, vol. 8, p. 223.

    Google Scholar 

  31. Niharika, Singh, N.B., Khare, S., Singh, A., Yadav, V., and Yadav, R.K., Salicylic acid and Indole acetic acid synergistically ameliorates Ferulic acid toxicity in Brassica juncea L. seedlings, Plant Physiol. Rep., 2021, vol. 26, p. 729. https://doi.org/10.1007/s40502-021-00617-w

    Article  CAS  Google Scholar 

  32. Korgaonker, S. and Bhandari, R., Response of Oryza sativa L. to the interactive effect of drought and salicylic acid, J. Stress Physiol. Biochem., 2021, vol. 17, p. 95.

    CAS  Google Scholar 

  33. Mittler, R., Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 2002, vol. 7, p. 405. https://doi.org/10.1016/s1360-1385(02)02312-9

    Article  CAS  PubMed  Google Scholar 

  34. Farooq, M., Wahid, A., Lee, D.J., Cheema, S.A., and Aziz, T., Drought stress: comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice, J. Agron. Crop Sci., 2010, vol. 196, p. 336. https://doi.org/10.1111/j.1439-037X.2010.00422.x

    Article  CAS  Google Scholar 

  35. Zafar, Z., Rasheed, F., Atif, R.M., Javed, M.A., Maqsood, M., and Gailing, O., Foliar application of salicylic acid improves water stress tolerance in Conocarpus erectus L. and Populus deltoids L. saplings: evidence from morphological, physiological, and biochemical changes, Plants, 2021, vol. 10, p. 1242. https://doi.org/10.3390/plants10061242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tola, A.J., Jaballi, A., and Missihoun, T.D., Protein carbonylation: emerging roles in plant redox biology and future prospects, Plants, 2021, vol. 10, p. 1451. https://doi.org/10.3390/plants10071451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Song, H., Xu, X., Wang, H., and Tao, Y., Protein carbonylation in barley seedling roots caused by aluminum and proton toxicity is suppressed by salicylic acid, Russ. J. Plant Physiol., 2011, vol. 58, p. 653. https://doi.org/10.1134/S1021443711040169

    Article  CAS  Google Scholar 

  38. Zafar, Z., Rasheed, F., Atif, R.M., Javed, M.A., Maqsood, M., and Gailing, O., Foliar application of salicylic acid improves water stress tolerance in Conocarpus erectus L. and Populus deltoides L. saplings: evidence from morphological, physiological and biochemical changes, Plants, 2021, vol. 10, p. 1242. https://doi.org/10.3390/plants10061242

  39. Tola, A.J., Jaballi, A., and Missihoun, T.D., Protein carbonylation: emerging roles in plant redox biology and future prospects, Plants, 2021, vol. 10, p. 1. https://doi.org/10.3390/plants10071451

  40. Song, H., Xu, X., Wang, H., and Tao, Y., Protein carbonylation in barley seedling roots caused by aluminum and proton toxicity is suppressed by salicylic acid, Russ. J. Plant Physiol., 2011, vol. 58, p. 653. https://doi.org/10.1134/S1021443711040169

Download references

ACKNOWLEDGMENTS

We authors acknowledge ICAR—Central Coastal Agricultural Research Institute, Goa, India, for providing us the seeds of paddy cultivars Jaya and Sahbhagi Dhan.

Funding

This research work was funded by the National Fellowship for Other Backward Classes (NF-OBC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bhandari.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The study does not involve human or animal participants by both authors.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest in publishing this research work.

Additional information

Abbreviations: DT—drought tolerant; DS—drought sensitive; PVP—polyvinylpyrrolidone; SA—salicylic acid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korgaonker, S., Bhandari, R. Alleviation of Drought Stress Effects in Two Rice (Oryza sativa L.) Cultivars by Foliar Application of Salicylic Acid. Russ J Plant Physiol 70, 131 (2023). https://doi.org/10.1134/S1021443723601003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723601003

Keywords:

Navigation