Skip to main content
Log in

Influence of Excess Zinc on the Activity of Components of the Antioxidant System in Brassica juncea L. (Czern.) and Sinapis alba L. Plants

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Under the conditions of a growing experiment, the authors studied the effect of zinc at concentrations of 5 (control), 50, 100, and 150 mg/kg substrate on growth, the intensity of lipid peroxidation (LPO), and the activity of the components of the antioxidant system in Brassica juncea L. (Сzern.) variety Slavyanka and Sinapis alba L. cultivar Belgium plants. Some differences and similarities were found in the AOS response of the studied species to an excess of zinc in the root environment. Thus, there were no changes in the intensity of lipid peroxidation in B. juncea under the influence of zinc in high concentrations, despite the high content of the metal in the roots and shoots. At the same time, even in the presence of metal at a concentration of 50 mg/kg substrate, an increase in the activity of guaiacol peroxidase (GPX) and catalase was observed. In S. alba at high concentrations of zinc in the substrate, the metal content in the shoots was higher than in B. juncea. At the same time, the content of malondialdehyde noticeably increased, despite the increased activity of superoxide dismutase and GPX. In both studied plant species, an increase in the zinc concentration in the substrate to 50 mg/kg and above led to an increase in the level of proline, while the content of carotenoids decreased. Considering that, in the studied concentrations, the metal had a less strong negative effect on shoot growth in B. juncea compared with S. alba, it was concluded that plants of this species are more resistant to excess zinc in the root environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Mourato, P.M., Moreira, I.N., Leitão, I., Pinto, F.R., Sales, J.R., and Martins, L.L., Effect of heavy metals in plants of the genus Brassica, IJMS, 2015, vol. 16, p. 17975. https://doi.org/10.3390/ijms160817975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeremski, T., Ranđelović, D., Jakovljevic, K., Jeromela, A.M., and Milić, S., Brassica species in phytoextractions: real potentials and challenges, Plants, 2021, vol. 10, p. 2340. https://doi.org/10.3390/plants10112340

  3. Bortoloti, G.A. and Baron, D., Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach, Environ. Adv., 2022, vol. 8, p. 100204. https://doi.org/10.1016/j.envadv.2022.100204

    Article  CAS  Google Scholar 

  4. Małecka, A., Konkolewska, A., Hanć, A., Barałkiewicz, L.C., Ratajczak, E., Staszak, A.M., Kmita, H., and Jarmuszkiewicz, W., Insight into the phytoremediation capability of Brassica juncea (v. Malopolska): metal accumulation and antioxidant enzyme activated, IJMS, 2019, vol. 20, p. 4355. https://doi.org/10.3390/ijms20184355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balafrej, H., Bogusz, D., Triqui, Z.A. Guedira, A., Bendaou, N., Smouni, A., and Fahr, M., Zinc hyperaccumulation in plants: a review, Plants, 2020, vol. 9, p. 562. https://doi.org/10.3390/plants9050562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu, J., Chai, T., Zhang, Y., Lang, M., and Han, L., The cation-efflux transporter BjCET2 mediates zinc and cadmium accumulation in Brassica juncea L. leaves, Plant Cell Rep., 2009, vol. 28, p. 1235. https://doi.org/10.1007/s00299-009-0723-1

    Article  CAS  PubMed  Google Scholar 

  7. Xu, J., Zhang, Y.X., Wei, W., Han, L., Guan, Z.Q., Wang, Z., and Chai, T.Y., BjDHNs confer heavy-metal tolerance in plants, Mol. Biotechnol., 2008, vol. 38, p. 91. https://doi.org/10.1007/s12033-007-9005-8

    Article  CAS  PubMed  Google Scholar 

  8. Khan, M.I.R., Jahan, B., Alajmi, M.F., Rehman, M.T., and Khan, N.A., Exogenously sourced ethylene modulates defense mechanisms and promotes tolerance to zinc stress in mustard (Brassica juncea L.), Plants, 2019, vol. 8, p. 540. https://doi.org/10.3390/plants8120540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prasad, K.V.S.K., Saradhi, P.P., and Sharmila, P., Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea, Environ. Exp. Bot., 1999, vol. 42, p. 1.

    Article  CAS  Google Scholar 

  10. Feigl, G., Kolbert, Z., Lehotai, N., Molnár, Á., Ördög, A., Bordé, Á., Laskay, G., and Erdei, L., Different zinc sensitivity of Brassica organs is accompanied by distinct responses in protein nitration level and patternet, Ecotoxicol. Environ. Saf., 2016, vol. 125, p. 141. https://doi.org/10.1016/j.ecoenv.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  11. Du, X., Zeng, T., Feng, Q., Hu, L., Luo, X., Weng, Q., He, J., and Zhu, B., The complete chloroplast genome sequence of yellow mustard (Sinapis alba L.) and its phylogenetic relationship to other Brassicaceae specie set, Gene, 2020, vol. 731, p. 144340. https://doi.org/10.1016/j.gene.2020.144340

    Article  CAS  PubMed  Google Scholar 

  12. Stanis£awska-Glubiak, E. and Karzeniowska, J., Tolerance of white mustard (Sinapsis alba L.) to soil pollution with several heavy metals, Ecol. Chem. Eng. A., 2001, vol. 8, p. 445.

  13. Zalewska, M. and Nogalska, A., Phytoextraction potential of sunflower and white mustard plants in zinc-contaminated soil, Chil. J. Agric. Res., 2014, vol. 74, p. 485. https://doi.org/10.4067/S0718-58392014000400016

    Article  Google Scholar 

  14. Soleimannejad, Z., Sadeghipour, H.R., Abdolzadeh, A., and Golalipour, M., Physiological responses of white mustard grown in Zn-contaminated soilset, Acta Physiol. Plant., 2020, vol. 42, p. 131. https://doi.org/10.1007/s11738-020-03119-8

    Article  CAS  Google Scholar 

  15. Juskulak, M., Grobelak, A., Grosser, A., and Vandenbulcke, F., Gene expression, DNA damage and other stress markers in Sinapis alba L. exposed to heavy metals with special reference to sewage sludge application on contaminated sites, Ecotoxicol. Environ. Saf., 2019, vol. 181, p. 508. https://doi.org/10.1016/j.ecoenv.2019.06.025

    Article  CAS  Google Scholar 

  16. Juskulak, M., Grobelak, A., and Vandenbulcke, F., Effects of sewage sludge supplementation on heavy metal accumulation and the expression of ABC transporters in Sinapis alba L. during assisted phytoremediation of contaminated sites, Ecotoxicol. Environ. Saf., 2020, vol. 197, p. 110606. https://doi.org/10.1016/j.ecoenv.2020.110606

    Article  CAS  Google Scholar 

  17. Sharama, Sh.S., Dietz and K.J., The relationship between metal toxicity and cellular redox imbalance, Trends Plant Sci., 2008, vol. 14, p. 43. https://doi.org/10.1016/j.tplants.2008.10.007

    Article  CAS  Google Scholar 

  18. Wang, Ch., Zhang, S.H., Wang, P.F., Hou, J., Zhang, W.J., Li, W., and Lin, Zh.P., The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings, Chemosphere, 2009, vol. 75, p. 1468. https://doi.org/10.1016/j.chemosphere.2009.02.033

    Article  CAS  PubMed  Google Scholar 

  19. Yang, H., Zhang, J., and Li, J., Physiological response to zinc pollution of rape (Brassica chinensis L) in paddy soil ecosystem, Adv. Mater., 2011, vol. 356, p. 39. https://doi.org/10.4028/www.scientific.net/AMR.356-360.39

  20. Blasco, B., Graham, N.S., and Broadley, M.R., Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply, J. Plant Physiol., 2015, vol. 176, p. 16. https://doi.org/10.1016/j.jplph.2014.07.029

    Article  CAS  PubMed  Google Scholar 

  21. Du, J., Guo, Zh., Li, R., Ali, A., Guo, D., Lahori, A.H., Wang, P., Liu, X., Wang, X., and Zhang, Z., Screening of Chinese mustard (Brassica juncea L.) cultivars for the phytoremediation of Cd and Zn based on the plant physiological mechanisms, Environ. Pollut., 2020, vol. 216, p. 114213. https://doi.org/10.1016/j.envpol.2020.114213

    Article  CAS  Google Scholar 

  22. Stewart, R.C. and Bewley, J.D., Lipid peroxidation associated with accelerated aging of soybean axes, Plant Physiol., 1980, vol. 65, p. 245. https://doi.org/10.1104/pp.65.2.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beauchamp, Ch. and Fridovich, I., Superoxide dismutase improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, p. 276.

    Article  CAS  PubMed  Google Scholar 

  24. Ershova, M.A., Nikerova, K.M., Galibina, N.A., Sofronova, I.N., and Borodina, M.N., Some minor characteristics of spectrophotometric determination of antioxidant system and phenolic metabolism enzyme activity in wood plant tissues of Pinus sylvestris L, Protein Pept. Lett., 2022, vol. 9, p. 711. https://doi.org/10.2174/0929866529666220414104747

    Article  CAS  Google Scholar 

  25. Aebi, H., Catalase in vitro, Methods in Enzymol., 1984, vol. 105, p. 121.

    Article  CAS  Google Scholar 

  26. Maehly, A.C., The assay of catalase and peroxidase, Meth. Biochem. Anal., 1954, vol. 1, p. 357.

    Article  CAS  Google Scholar 

  27. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, p. 248.

    Article  CAS  PubMed  Google Scholar 

  28. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil., 1973, vol. 39, p. 205.

    Article  CAS  Google Scholar 

  29. Wintermans, J.E.G., and De Mots, A., Spectrophotometric characteristics of chlorophyll a and b and their phaeophytins in ethanol, Biochim. Biophys. Acta, 1965, vol. 109, p. 448. https://doi.org/10.1016/0926-6585(65)90170-6

    Article  CAS  PubMed  Google Scholar 

  30. NSAM No. 499-AES/MS. Determination of the elemental composition of rocks, soils, soils and bottom sediments by atomic emission with inductively coupled plasma and mass spectral with inductively coupled plasma methods (ed. 2015).

  31. Natasha, N., Shanid, M., Bibi, I., Iqbal, J., Khalid, S., Murtaza, B., Bakhat, H.F., Farooq, A.B.U., Amjad, M., Hammad, H.M., Niazi, N.Kh., and Arshad, M., Zinc in soil-plant-human system: A data-analysis review, Sci. Total Environ., 2022, vol. 808, p. 152024. https://doi.org/10.1016/j.scitotenv.2021.152024

    Article  CAS  PubMed  Google Scholar 

  32. Alia Prasad, K.V.S.K. and Saradhi, P.P., Effect of zinc on free radicals and proline in Brassica and Cajanus, Phytochem., 1995, vol. 39, p. 45. https://doi.org/10.1016/0031-9422(94)00919-K

    Article  Google Scholar 

  33. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, p. 405.

    Article  CAS  PubMed  Google Scholar 

  34. Schutzendubel, A. and Polle, A., Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhizatin, J. Exp. Bot., 2002, vol. 53, p. 1351.

    CAS  PubMed  Google Scholar 

  35. Dai, H., Wei, Sh., Skuza, L., and Jia, G., Selenium spiked in soil promoted zinc accumulation of Chinese cabbage and improved its antioxidant system and lipid peroxidation, Ecotoxicol. Environ. Saf., 2019, vol. 180, p. 179. https://doi.org/10.1016/j.ecoenv.2019.05.017

    Article  CAS  PubMed  Google Scholar 

  36. Srivastava, M., Ma, L.Q., Singh, N., and Singh, Sh., Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic, J. Exp. Bot., 2005, vol. 56, p. 1335. https://doi.org/10.1093/jxb/eri134

    Article  CAS  PubMed  Google Scholar 

  37. Mohmoud, A., Elgawad, H.A., Hamed, B.A., Beemster, G.T.S., and El-Shafey, N.M., Differences incadmium accumulation, detoxification and antioxidant defenses between contrasting maize cultivars implicate a role of superoxide dismutase in Cd tolerance, Antioxidants, 2021, vol. 10, p. 1812. https://doi.org/10.3390/antiox10111812

    Article  CAS  Google Scholar 

  38. Ghnaya, A.B., Hourmant, A., Cerantola, S., Kervarec, N., Cabon, J.Y., Branchard, M., and Charles, G., Influence of zinc on soluble carbohydrate and free amino acid levels in rapeseed plants regenerated in vitro in the presence of zinc, Plant Cell, Tissue Organ Cult., 2010, vol. 102, p. 191. https://doi.org/10.1007/s11240-010-9721-9

    Article  CAS  Google Scholar 

  39. Lin, M.Z. and Jin, M.F., Soil Cu contamination destroys the photosynthetic systems and hampers the growth of green vegetables, Photosynthetica, 2018, vol. 56, p. 1336. https://doi.org/10.1007/s11099-018-0831-7

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 22-24-00668). The equipment of the Center for Collective Use of the Federal Research Center Karelian Scientific Center, Russian Academy of Sciences, was used in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Nilova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving humans as research subjects.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilova, I.A., Repkina, N.S. & Kaznina, N.M. Influence of Excess Zinc on the Activity of Components of the Antioxidant System in Brassica juncea L. (Czern.) and Sinapis alba L. Plants. Russ J Plant Physiol 70, 96 (2023). https://doi.org/10.1134/S1021443723600861

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723600861

Keywords:

Navigation