Skip to main content
Log in

Ascorbic Acid and Vanillic Acid Application Alleviate the Lead Toxicity in Lycopersicon esculentum by Modulating Key Biochemical Attributes and Antioxidant Defense Systems

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Lead (Pb) toxicity suppresses plant growth and productivity and poses human health concerns. While Ascorbic acid (AsA) and vanillic acid (VA) are reported to impart multiple benefits to plants exposed to abiotic stresses. In this study, the influence of WS, AsA (0, and 1.5 mM) and VA (0, and 0.5 mM) application was evaluated to improve the performance of tomato cultivars i.e., Nagina and Roma, under Pb stress (1280 µM). Our results showed an apparent decline in growth, biomass, photosynthetic pigments, relative water content (RWC), total soluble proteins, total free amino acid (TFAA), anthocyanin contents, and nutrient acquisition (Ca, Mg, Zn and Fe) and enhanced levels of ROS and MDA production under Pb stress. Further, reduced glutathione (GSH) levels diminished with a simultaneous rise in oxidized glutathione levels (GSSG). Plants subjected to Pb stress remarkably increased the Pb accumulation in roots, shoots, and leaves maximally in Roma than in Nagina. However, exogenous AsA and VA effectively mitigated the metal phytotoxic effects by strengthening the activities of antioxidant enzymes and level of antioxidants. Ascorbic acid and VA remarkably increased the cytosolutes accumulation, including anthocyanin, endogenous AsA, soluble sugars, proline, free amino acids, and total soluble proteins under Pb stress. Ascorbic acid and VA-mediated drop in oxidative stress diminished membrane damage and improved nutrient acquisition under Pb stress. In conclusion, AsA and VA applications improved the Pb tolerance in tomato plants by modulating plant growth, decreasing Pb buildup, and activating the antioxidant defense system. Both AsA and VA markedly regulated the uptake and distribution of Pb in tomato plants, abridging the degree of metal phytotoxic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Álvarez-Robles, M.J., Clemente, R., Ferrer, M.A., Calderón, A., and Bernal, M.P., Effects of ascorbic acid addition on the oxidative stress response of Oryza sativa L. plants to As (V) exposure, Plant Physiol. Biochem., 2022, vol. 186, p. 232. https://doi.org/10.1016/j.plaphy.2022.07.013

    Article  CAS  PubMed  Google Scholar 

  2. Riaz, M., Kamran, M., Fang, Y., Wang, Q., Cao, H., Yang, G., and Wang, X., Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review, J. Hazard. Mater., 2020, vol. 402, p. 123919. https://doi.org/10.1016/j.jhazmat.2020.123919

    Article  CAS  PubMed  Google Scholar 

  3. Proshad, R., Kormoker, T., Mursheed, N., Islam, M.M., Bhuyan, M.I., Islam, M.S., and Mithu, T.N., Heavy metal toxicity in agricultural soil due to rapid industrialization in Bangladesh: a review, Int. J. Adv. Geosci., 2018, vol. 6(1), p. 83. https://doi.org/10.14419/ijag.v6i1.9174

    Article  Google Scholar 

  4. Zhang, S., Chen, M., Li, T., Xu, X., and Deng, L., A newly found cadmium accumulator—Malva sinensis Cavan., J. Hazard. Mater., 2010, vol. 173, p. 705. https://doi.org/10.1016/j.jhazmat.2009.08.142

    Article  CAS  PubMed  Google Scholar 

  5. Khan, S., Cao, Q., Zheng, Y.M., Huang, Y.Z., and Zhu, Y.G., Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China, Environ. Pollut., 2008, vol. 152, no. 3, p. 686. https://doi.org/10.1016/j.envpol.2007.06.056

    Article  CAS  PubMed  Google Scholar 

  6. Hengstler, J.G., Bolm-Audorff, U., Faldum, A., Janssen, K., Reifenrath, M., Götte, W., and Oesch, F., Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected, Carcinogenesis, 2003, vol. 24, no. 1, p. 63. https://doi.org/10.1093/carcin/24.1.63

    Article  CAS  PubMed  Google Scholar 

  7. Afzaal, Z., Hussain, I., Ashraf, M. A., Rasheed, R., Javed, M. T., Mahmood-ur-Rahman Ansari, S. A., and Iqbal, M., Lead induced modulation in growth, chlorophyll pigment, nutrient uptake, antioxidant enzyme regulation, gene expression and fruit quality in two tomato cultivars, Int. J. Agric. Biol., 2020, vol. 24, no. 6, p. 1732. https://doi.org/10.17957/IJAB/15.1617

    Article  CAS  Google Scholar 

  8. Emamverdian, A., Ding, Y., Mokhberdoran, F., and Xie, Y., Heavy metal stress and some mechanisms of plant defense response, Sci. World J., 2015, vol. 2015, p. 756120. https://doi.org/10.1155/2015/756120

    Article  Google Scholar 

  9. Hasanuzzaman, M., Nahar, K., Anee, T.I., and Fujita, M., Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance, Physiol. Mol. Biol. Plants, 2017, vol. 23, p. 249. https://doi.org/10.1007/s12298-017-0422-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. El-Beltagi, H.S., Mohamed, H.I., and Sofy, M.R., Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals, Molecules, 2020, vol. 25, no. 7, p. 1702. https://doi.org/10.3390/molecules25071702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xuan, T.D. and Khang, D.T., Effects of exogenous application of protocatechuic acid and vanillic acid to chlorophylls, phenolics and antioxidant enzymes of rice (Oryza sativa L.) in submergence, Molecules, 2018, vol. 23, no. 3, p. 620. https://doi.org/10.3390/molecules23030620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alamri, S.A., Siddiqui, M.H., Al-Khaishany, M.Y., Nasir Khan, M., Ali, H.M., Alaraidh, I.A., and Mateen, M., Ascorbic acid improves the tolerance of wheat plants to lead toxicity, J. Plant Interact., 2018, vol. 13(1), p. 409.

    Article  CAS  Google Scholar 

  13. Zhou, X., Gu, Z., Xu, H., Chen, L., Tao, G., Yu, Y., and Li, K., The effects of exogenous ascorbic acid on the mechanism of physiological and biochemical responses to nitrate uptake in two rice cultivars (Oryza sativa L.) under aluminum stress, J. Plant Growth Regul., 2016, vol. 35, p. 1013. https://doi.org/10.1007/s00344-016-9599-9

    Article  CAS  Google Scholar 

  14. Alami-Milani, M. and Aghaei-Gharachorlou, P., Effect of ascorbic acid application on yield and yield components of lentil (Lens culinaris Medik.) under salinity stress, Int. J. Biosci., 2015, vol. 6, p. 43. https://doi.org/10.12692/ijb/6.1.43-49

    Article  CAS  Google Scholar 

  15. Akram, N.A., Shafiq, F., and Ashraf, M., Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance, Front. Plant Sci., 2017, p. 613. https://doi.org/10.3389/fpls.2017.00613

  16. Farooq, M., Irfan, M., Aziz, T., Ahmad, I., and Cheema, S.A., Seed priming with ascorbic acid improves drought resistance of wheat, J. Agron. Crop Sci., 2013, vol. 199, no. 1, p. 12. https://doi.org/10.1111/j.1439-037X.2012.00521.x

    Article  CAS  Google Scholar 

  17. Alayafi, A.A.M., Exogenous ascorbic acid induces systemic heat stress tolerance in tomato seedlings: transcriptional regulation mechanism, Environ. Sci. Pollut. Res., 2020, vol. 27, no. 16, p. 19186. https://doi.org/10.1007/s11356-019-06195-7

    Article  CAS  Google Scholar 

  18. FAOSTAT, The Official Web Site of Food and Agriculture Organization of the United Nations, 2016, http://faostat.fao.org/site/291/default.aspx.

  19. Qasim, M., Samman Liaqat, A.U., Khan, H., Nasir, H., Awan, M.S., and Akbar, K., Postharvest factors affecting shelf life and quality of harvested tomatoes; a comprehensive review, Scholars J. Agric. Vet. Sci., 2022, vol. 6, p. 65. https://doi.org/10.36347/sjavs.2022.v09i06.001

    Article  Google Scholar 

  20. Shi, J. and Maguer, M.L., Lycopene in tomatoes: chemical and physical properties affected by food processing, Crit. Rev. Food Sci. Nutr., 2000, vol. 40, no. 1, p. 1. https://doi.org/10.1080/10408690091189275

    Article  CAS  PubMed  Google Scholar 

  21. Demirbas, A., Oil, micronutrient and heavy metal contents of tomatoes, Food Chem., 2010, vol. 118, no. 3, p. 504. https://doi.org/10.1016/j.foodchem.2009.05.007

    Article  CAS  Google Scholar 

  22. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Meth. Enzymol., 1987, vol. 148, p. 350. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  23. Cornic, G., Drought stress and high light effects on leaf photosynthesis, Photoinhib. Photosynth., 1994, p. 297. https://doi.org/10.1007/0-306-48135-9_14

    Book  Google Scholar 

  24. Velikova, V., Yordanov, I., and Edreva, A., Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines, Plant Sci., 2000, vol. 151, no. 1, p. 59. https://doi.org/10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  25. Heath, R. L. and Packer, L., Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125(1), p. 189. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  26. Mukherjee, S.P. and Choudhuri, M.A., Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings, Physiol. Plant., 1983, vol. 58, no. 2, p. 166. https://doi.org/10.1111/j.1399-3054.1983.tb04162.x

    Article  CAS  Google Scholar 

  27. Hamilton, P.B. and Van Slyke, D.D., Amino acid determination with ninhydrin, J. Biol. Chem., 1943, vol. 150, no. 1, p. 231. https://doi.org/10.1039/AN9558000209

    Article  CAS  Google Scholar 

  28. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, p. 248. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  29. Hodges, D.M. and Nozzolillo, C., Anthocyanin and anthocyanoplast content of cruciferous seedlings subjected to mineral nutrient deficiencies, J. Plant Physiol., 1996, vol. 147, no. 6, p. 749. https://doi.org/10.1016/S0176-1617(11)81488-4

    Article  CAS  Google Scholar 

  30. Zhishen, J., Mengcheng, T., and Jianming, W., The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem., 1999, vol. 64, no. 4, p. 555. https://doi.org/10.1016/S0308-8146(98)00102-2

    Article  CAS  Google Scholar 

  31. Julkunen-Tiitto, R., Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics, J. Agric. Food Chem., 1985, vol. 33, no. 2, p. 213. https://doi.org/10.1021/jf00062a013

    Article  CAS  Google Scholar 

  32. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, no. 1, p. 205. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  33. Nelson, N., A photometric adaptation of the Somogyi method for the determination of glucose, J. Biol. Chem., 1944, vol. 153, no. 2, p. 375. https://doi.org/10.1016/S0021-9258(18)71980-7

    Article  CAS  Google Scholar 

  34. Yemm, E.W. and Willis, A., The estimation of carbohydrates in plant extracts by anthrone, Biochem. J., 1954, vol. 57, no. 3, p. 508. https://doi.org/10.1042/bj0570508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chance, B. and Maehly, A.C., Assay of catalases and peroxidases, Methods Biochem. Anal., 1954, vol. 1, p. 357. https://doi.org/10.1002/9780470110171.ch14

    Article  PubMed  Google Scholar 

  36. Gong, H., Zhu, X., Chen, K., Wang, S., and Zhang, C., Silicon alleviates oxidative damage of wheat plants in pots under drought, Plant Sci., 2005, vol. 169, no. 2, p. 313. https://doi.org/10.1016/j.plantsci.2005.02.023

    Article  CAS  Google Scholar 

  37. Griffith, O.W., Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine, Anal. Biochem., 1980, vol. 106, no. 1, p. 207. https://doi.org/10.1016/0003-2697(80)90139-6

    Article  CAS  PubMed  Google Scholar 

  38. Allen, S.E., Grimshaw, H.M., and Rowland, A.P., Chemical analysis, in Methods of Plant Ecology, Moore, P.D. and Chapman, S.B., Eds., Oxford: Blackwell, 1986, p. 285.

    Google Scholar 

  39. Gaafar, A.A., Ali, S.I., El-Shawadfy, M.A., Salama, Z.A., Sękara, A., Ulrichs, C., and Abdelhamid, M.T., Ascorbic acid induces the increase of secondary metabolites, antioxidant activity, growth, and productivity of the common bean under water stress conditions, Plants, 2020, vol. 9, no. 5, p. 627. https://doi.org/10.3390/plants9050627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parvin, K., Nahar, K., Hasanuzzaman, M., Bhuyan, M.B., Mohsin, S.M., and Fujita, M., Exogenous vanillic acid enhances salt tolerance of tomato: Insight into plant antioxidant defense and glyoxalase systems, Plant Physiol. Biochem., 2020, vol. 150, p. 109. https://doi.org/10.1016/j.plaphy.2020.02.030

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is a part of PhD dissertation of Ms. Zarbakht Afzaal, and authors acknowledge the Government College University, Faisalabad, Pakistan for providing support through GCUF-RSP (Project Code: 48-Bot-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Hussain.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzaal, Z., Hussain, I., Mahmood-ur-Rahman et al. Ascorbic Acid and Vanillic Acid Application Alleviate the Lead Toxicity in Lycopersicon esculentum by Modulating Key Biochemical Attributes and Antioxidant Defense Systems. Russ J Plant Physiol 70, 129 (2023). https://doi.org/10.1134/S1021443723600769

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723600769

Keywords:

Navigation