Skip to main content
Log in

Gene Expression of Metal Transporting P-Type ATPases HMA2 and HMA4 in Brassica juncea L. Grown at Different Zn Levels

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The Brassicaceae plant family includes some of the most economically important crops with wide-ranging adaptability for cultivation under various agro-climatic conditions. Among 25% of discovered heavy metal hyperaccumulators belong to this family. Brassica juncea (L.) Czern. hyperaccumulate metals in leaves and thus has a great potential for phytoremediation of metals from contaminated soils. In this study, B. juncea plants were grown in the soil at different zinc concentrations (0–500 µM). Plants showed no toxicity symptoms and accumulated a significant amount of Zn in the leaves. Gene expression analysis showed that increased Zn levels in the leaves trigger the expression of the HMA2 and HMA4 genes, suggesting that they play an essential role in Zn detoxification and sequestration at the subcellular level. Furthermore, the bioinformatics analysis of these transporters in B. juncea showed a significant similarity at gene and protein levels to that of HMA2 and HMA4 transporters in other members of the Brassicaceae family. The data indicates the importance of these transporters in Zn sequestration and detoxification in accumulator plants in Brassicaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. White, P.J., and Brown, P.H., Plant nutrition for sustainable development and global health, Ann. Bot., 2010, vol. 105, p. 1073. https://doi.org/10.1093/aob/mcq085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rascio, N. and Navari-Izzo, F., Heavy metal hyperaccumulating plants: How and why do they do it and what makes them so interesting?, Plant Sci., 2011, vol. 180, p. 169. https://doi.org/10.1016/j.plantsci.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  3. Berni, R., Luyckx M., Xu X., Legay S., Sergeant K., Hausman J.F., Lutts S., Cai G., and Guerriero G., Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism, Environ. Exp. Bot., 2019, vol. 161, p. 98. https://doi.org/10.1016/j.envexpbot.2018.10.017

    Article  CAS  Google Scholar 

  4. Chmielowska-Bąk, J. and Deckert, J., Plant recovery after metal stress—a review, Plants, 2021, vol. 10, p. 450. https://doi.org/10.3390/plants10030450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marschner, H., Mineral Nutrition of Higher Plants, London: Academic Press, 1995, p. 333.

    Google Scholar 

  6. Memon, A.R. and Schroder, P., Implications of metal accumulation mechanisms to phytoremediation, Environ. Sci. Pollut. Rest. Int., 2009, vol. 16, p. 162.

    Article  CAS  Google Scholar 

  7. Memon, A.R., Yıldızhan, Y., and Keskin, B.C., Enhanced Cu tolerance in Brassica nigra (L) is associated with increased transcription level of γ-glutamyl cysteine synthatase (γ-ECS) and phytochelatin and degradation of pollutants, Conference Paper, University of Verona, Ital-y, June 5–6, 2008, p. 68.

  8. Salt, D.E., Blaylock, M., Kumar, NPBA, Dushenkov, V., Ensley, B.D., Chet, I., and Raskin, I., Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat. Biotechnol., 1995, vol. 13, p. 468. https://doi.org/10.1038/nbt0595-468

    Article  CAS  Google Scholar 

  9. Memon, A.R., Metal hyper-accumulators: Mechanism of hyperaccumulation and metal tolerance, Phytoremediation: Management of Environmental Contaminants, Ansari, A., Gill, S., Gill, R., Lanza, G., and Newman, L., Eds., Springer, 2016, p. 239. https://doi.org/10.1007/978-3-319-40148-5_8

    Book  Google Scholar 

  10. Sytar, O., Ghosh, S., Malinska, H., Zivcak, M., and Brestic, M., Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants, Physiol. Plant., 2021, vol. 173, p. 148. https://doi.org/10.1111/ppl.13285

    Article  CAS  PubMed  Google Scholar 

  11. Baker, A. and Whiting, S.N., In search of the Holy Grail-a further step in understanding metal hyperaccumulation?, New Phytol., 2002, vol. 155, p. 1. https://doi.org/10.1046/j.1469-8137.2002.00449_1.x

    Article  PubMed  Google Scholar 

  12. Memon, A.R., Aktoprakligil, D., Özdemir, A., and Vertii, A., Heavy metal accumulation and detoxification mechanisms in plants, Turk. J. Bot., 2001, vol. 25, p. 111.

    Google Scholar 

  13. Verbruggen, N., Hermans, C., and Schat H., Mechanisms to cope with arsenic or cadmium excess in plants, Curr. Opin. Plant Biol., 2009, vol. 12, p. 364. https://doi.org/10.1016/j.pbi.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  14. Van der Ent, A., Baker, A. J., Reeves, R. D., Pollard, A. J., and Schat, H., Hyperaccumulator of metal and metalloid trace elements: facts and fiction, Plant Soil, 2013, vol. 362, p. 319. https://doi.org/10.1007/s11104-012-1287-3

    Article  CAS  Google Scholar 

  15. Mithen, R., The plant family Brassicaceae: contribution towards phytoremediation, Anjum, N.A., Ahmad, I., Pereira, M.E., Duarte, A.C., Umar, S., and Khan, N.A., Eds., Heidelberg, Germany: Springer, 2012. p. 339.

    Google Scholar 

  16. Koch, M.A. and German, D., Taxonomy, and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea, and Schrenkiella (Brassicaceae) as examples, Front. Plant Sci., 2013, vol. 4, p. 267. https://doi.org/10.3389/fpls.2013.00267

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schippers, R.R. and Mnzava, N.A., Brassica juncea (L.) Czern., in: PROTA 14, Vegetable oils, Van der Vossen, H.A.M. and Mkamilo, G.S., Eds., Wageningen, Netherlands: PROTA, 2007.

    Google Scholar 

  18. Bublitz, M., Morth, J.P., and Nissen, P., P-type ATPases at a glance, J. Cell Sci., 2011, vol. 124, p. 2515. https://doi.org/10.1242/jcs.088716

    Article  CAS  PubMed  Google Scholar 

  19. Verret, F., Gravot, A., Auroy, P., Preveral, S., Forestier, C., Vavasseur, A., and Richaud P., Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch, FEBS Lett., 2005, vol. 579, p. 1515. https://doi.org/10.1016/j.febslet.2005.01.065

    Article  CAS  PubMed  Google Scholar 

  20. Memon, A.R. and Zahirovic, E., Genomics and Transcriptomics Analysis of Cu Accumulator Plant Brassica nigra L., J. Appl. Biol. Sci., 2014, vol. 8, p. 1.

    Google Scholar 

  21. Hussain, D., Haydon, M.J., Wang, Y., Wong, E., Sherson, S.M., Young, J., Camakaris, J., Harper, J.F., and Cobbett, C.S., P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis, Plant Cell, 2004, vol. 16, p. 1327. https://doi.org/10.1105/tpc.020487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Østerberg, J.T. and Palmgren, M., Heavy Metal Pumps in Plants: Structure, Function and Origin, Adv. Bot. Res., 2018, vol. 87, p. 57.

    Article  Google Scholar 

  23. Hoagland, D.R. and Arnon, D.I., The water culture method for growing plants without soil, Calif. Agric. Exp. Sta. Circ., 1938, vol. 347, p. 1.

    CAS  Google Scholar 

  24. Memon, A.R., Itô, S., and Yatazawa, M., Absorption and accumulation of iron, manganese and copper in plants in the temperate forest of central Japan, Soil Sci. Plant Nutr., 1979, vol. 25, p. 611. https://doi.org/10.1080/00380768.1979.10433201

    Article  CAS  Google Scholar 

  25. Memon, A.R., Hwang, S., Deshpande, N., Thompson, G.A., and Herrin, D.L., Novel aspects of the regulation of a cDNA (Arf1) from Chlamydomonas with high sequence identity to animal ADP-ribosylation factor 1, Plant Mol. Biol., 1995, vol. 29, p. 567.

    Article  CAS  PubMed  Google Scholar 

  26. Cevher-Keskin, B., Yıldızhan, Y., Yüksel, B., Dalyan, E., and Memon, A.R., Characterization of differentially expressed genes to Cu stress in Brassica nigra by Arabidopsis genome arrays, Environ. Sci. Pollut. Res., 2019, vol. 26, p. 299. https://doi.org/10.1007/s11356-018-3577-7

    Article  CAS  Google Scholar 

  27. Memon, A.R., Schwager, C.K., and Niehaus, K., Expression of small GTPases inthe roots and nodules of Medicago truncatula cv. Jemalong, Acta Bot. Croat., 2019, vol. 78, p. 1. https://doi.org/10.2478/botcro-2019-0008

    Article  CAS  Google Scholar 

  28. Sievers, F. and Higgins, D.G., Clustal Omega for making accurate alignments of many protein sequences, Protein Sci., 2018, vol. 27, p.135. https://doi.org/10.1002/pro.3290

    Article  CAS  PubMed  Google Scholar 

  29. Lesk, A.M., Introduction to Bioinformatics, New York: Oxford Univ. Press, 2002.

    Google Scholar 

  30. Claverie, J.M. and Notredame, C., Bioinformatics for Dummies, Second Education, Indianapolis: Wiley Publishing, 2007.

  31. Dereeper, A., Guignon, V., Claverie, J.M., and Blanc, G., Phylogeny.fr: robust phylogenetic analysis for the non-specialist, Nucleic Acids Res., vol. 2010, 36, p. W465. https://doi.org/10.1093/nar/gkn180.

  32. Eren, E. and Argüello, J.M., Arabidopsis HMA2, a divalent heavy metal-transporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis, Plant Physiol., 2004, vol. 136, p. 3712. https://doi.org/10.1104/pp.104.046292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hermand, V., Julio, E., Dorlhac de Borne, F., Punshon, T., Ricachenevsky, F. K., Bellec, A., Gosti, F., and Berthomieu, P., Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and Cd accumulation in shoots and reduced pollen germination, Metallomics: Integrated Biometal Science, 2014, vol. 6, p. 1427. https://doi.org/10.1039/c4mt00071d

  34. Memon, A.R. and Merakli, N., Structure and function of heavy metal transporting ATPases in Brassica species, Phytoremediation, Newman, L., et al., Eds., Springer Nature, 2022, p. 75. https://doi.org/10.1007/978-3-031-17988-4_5

  35. Kafle, A., Evaluation of antagonistic plant materials to control southern root knot nematode in tomato, J. Agric. Environ., 2013, vol. 14, p. 78. https://doi.org/10.3126/aej.v14i0.19788

    Article  Google Scholar 

  36. Satpathy, D., and Reddy, M.V., Phytoextraction of Cd, Pb, Zn, Cu and Mn by Indian Mustard (Brassica juncea L.) grown on loamy soil amended with heavy metal contaminated municipal solid waste compost, Appl. Ecol. Environ. Res., 2013, vol. 11, p. 661.

    Article  Google Scholar 

  37. Wu, Z., Zhao, X., Sun, X., Tan, Q., Tang, Y., Nie, Z., and Hu, C., Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus), Chemosphere, 2015, vol. 119, p. 1217. https://doi.org/10.1016/j.chemosphere.2014.09.099

    Article  CAS  PubMed  Google Scholar 

  38. Mills, R.F., Krijger, G.C., Baccarini, P.J., Hall, J.L., and Williams, L.E., Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass, Plant J., 2003, vol. 35, p. 164. https://doi.org/10.1046/j.1365-313x.2003.01790.x

    Article  CAS  PubMed  Google Scholar 

  39. Courbot, M., Willems, G., Motte, P., Arvidsson, S., Roosens, N., Saumitou-Laprade, P., and Verbruggen, N., A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase, Plant Physiol., 2007, vol. 144, p. 1052. https://doi.org/10.1104/pp.106.095133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanikenne, M., Talke, I.N., Haydon, M.J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D., and Krämer, U., Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4, Nature, 2008, vol. 453, p. 391. https://doi.org/10.1038/nature0687741

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We appreciate the help given by Amar Cemanovic, Istanbul Technical University, Istanbul in some experimental procedures.

Funding

This work was supported by the Usak University Scientific Research Project (BAP) grant given to Prof. Dr. Abdulrezzak Memon (project no. BAP-2017/TP042).

Author information

Authors and Affiliations

Authors

Contributions

Concept: ARM, Desing: ARM, NM, Execution: ARM, NM, Material supplying: ARM, Data acquisition: ARM, NM, Writing: ARM, NM, Critical review: ARM.

Corresponding author

Correspondence to A. Memon.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants as objects of research.

CONFLICT OF INTEREST

The authors declare that they have no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meraklı, N., Memon, A. Gene Expression of Metal Transporting P-Type ATPases HMA2 and HMA4 in Brassica juncea L. Grown at Different Zn Levels. Russ J Plant Physiol 70, 34 (2023). https://doi.org/10.1134/S102144372260283X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S102144372260283X

Keywords:

Navigation