Skip to main content
Log in

Ethylene and Gibberellin: Two Key Phytohormones for Stimulating and Alleviating the Postharvest Associated Oxidative Stress in Rosa hybrida L.

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Ethylene and gibberellin are two key phytohormones in regulating the postharvest physiological mechanism of plants. The present work aimed to understand the relationship between phytohormones and physiological responses to oxidative stress in transgenic (TR) and wild type (WT) roses at the bud and half-opening stages. The cut roses were subjected to exogenous exposure to 1 µL/L ethylene gas and 80 mg/L gibberellin (GA3) at both stages for 24 h. The TR cut roses were less sensitive to ethylene as they contained the mutant etr1-1 gene. The main physiological parameters and endogenous phytohormones were measured in the outer ring of the petals by a factorial method in a completely randomized design in triplicates using GC, HPLC, and UV/VIS spectroscopy techniques. Endogenous ethylene and GA3 increased and decreased with the flower opening and senescence in both lines, respectively. Antagonistic action in metabolism was observed by endogenous production and exogenous application of two phytohormones. GA3 treatment significantly alleviated the postharvest-associated oxidative stress, so that the cut roses had the highest total protein, soluble carbohydrates, proline, and DPPH scavenging capacity, as well as the lowest MDA content and antioxidant enzyme activities at both bud and half-open stages. Both studied phytohormones can effectively control physiological responses associated with oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Leus, L., Van Laere, K., De Riek, J., and Van Huylenbroeck, J., Rose, Ornamental Crops, Handbook of Plant Breeding, Van Huylenbroeck, J., Ed., Cham: Springer, 2018. vol. 11, p. 719. https://doi.org/10.1007/978-3-319-90698-0_27

  2. Khatami, F., Najafi, F., Yari, F., and Khavari-Nejad, R.A., Expression of etr1-1 gene in transgenic Rosa hybrida L. increased postharvest longevity through reduced ethylene biosynthesis and perception, Sci. Hortic., 2020, vol. 263, p. 109103. https://doi.org/10.1016/j.scienta.2019.109103

    Article  CAS  Google Scholar 

  3. Cavalcante da Costa, L., Ferreira de Araujo, F., Ribeiro, W.S., Nayana de Sousa Santos, M., and Luiz Finger, F., Postharvest physiology of cut flowers, Ornament. Hortic., 2021, vol. 27, p. 374. https://doi.org/10.1590/2447-536x.v27i3.2372

    Article  Google Scholar 

  4. Neljubow, D., Ueber die horizonate nutation der stengel von pisum sativum und einiger anderer panzen, Beihefte zum Botanischen Zentralblatt, 1901, vol. 10, p. 128

    Google Scholar 

  5. Iqbal, N., Khan, N.A., Ferrante, A., Trivellini, A., Francini, A., and Khan, M.I.R., Ethylene role in plant growth, development and senescence: Interaction with other phytohormones, Front. Plant Sci., 2017, vol. 8, p. 475. https://doi.org/10.3389/fpls.2017.00475

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hunter, D.A., Ferrante, A., Vernieri, P., and Reid, M.S., Role of abscisic acid in perianth senescence of daffodil (Narcissus pseudonarcissus “Dutch Master”), Physiol. Plant., 2004, vol. 121, p. 313. https://doi.org/10.1111/j.0031-9317.2004.0311.x

    Article  CAS  PubMed  Google Scholar 

  7. Lü, P., Zhang, C., Liu, J., Liu, X., Jiang, G., Jiang, X., Khan, M.A., Wang, L., Hong, B., and Gao, J., RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence, Plant J., 2014, vol. 78, p. 578. https://doi.org/10.1111/tpj.12494

    Article  CAS  PubMed  Google Scholar 

  8. Yari, F., The process of long life rose insensitive to ethylene with etr1-1 mutant gene, Iranian Patent 95760 (in Farsi), 2016.

  9. Bovy, A.G., Angenent, G.C., Dons, H.J.M., and van Altvorst, A.C., Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers, Mol. Breed., 1999, vol. 5, p. 301. https://doi.org/10.1023/A:1009617804359

    Article  CAS  Google Scholar 

  10. Schmitzer, V., Veberic, R., Osterc, G., and Stampar, F., Color and phenolic content changes during flower development in groundcover rose, J. Am. Soc. Hortic. Sci., 2010, vol. 135, p. 195. https://doi.org/10.21273/JASHS.135.3.195

    Article  Google Scholar 

  11. Heath, R.L. and Packer, L., Photooxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Bioch. Biophys., 1968, vol. 125, p. 189. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  Google Scholar 

  12. Krings, U. and Berger, R.G., Antioxidant activity of some roasted foods, Food Chem., 2001, vol. 72, p. 223. https://doi.org/10.1016/S0308-8146(00)00226-0

    Article  CAS  Google Scholar 

  13. Dubois, M., Gilles, K.A., Hamilton, J.K., Reber, P.A., and Smith, F., Colorimetric method for determination of sugars and related substances, Annu. Chem., 1956, vol. 28, p. 350. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  14. Bradford, M., A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding, Annu. Rev. Biochem., 1976, vol. 72, p. 248. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  Google Scholar 

  15. Chowdhury, S.R. and Cboudburi, M.A., Hydrogen peroxide metabolism as an index of water stress tolerance in jute, Physiol. Plant., 1985, vol. 65, p. 476. https://doi.org/10.1111/j.1399-3054.1985.tb08676.x

    Article  CAS  Google Scholar 

  16. Zhang, J., Cui, S., Li, J., Wei, J., and Kirkham, M.B., Protoplasmic factors, antioxidant responses, and chilling resistance in maize, Physiol. Biochem., 1995, vol. 33, p. 567. https://doi.org/10.1104/pp.109.1.327

    Article  CAS  Google Scholar 

  17. Patterson, B.D., Pyane, L.N., Chen, Y., and Grahum, D., An inhibitor of catalase indused by cold chilling–sensitive plant, Plant Physiol., 1984, vol. 76, p. 1014. https://doi.org/10.1104/pp.76.4.1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tatiana, Z., Yamashita, K., and Matsumoto, H., Iron deficiency indused changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber root, Plant Cell Physiol., 1999, vol. 40, p. 273. https://doi.org/10.1093/oxfordjournals.pcp.a029538

    Article  Google Scholar 

  19. El-Nabarawy, M.A., El-Kafafi, E.H., Abo El-Enien, H.E., and Salama, M.K., Senescece of rose flowers 2-regulation aging and prolong their vase life, Plant Prod. Sci., 2018, vol. 45, p. 869. https://doi.org/10.21608/zjar.2018.49125

    Article  Google Scholar 

  20. Ibrahim, M., Agarwal, M., Hardy, G., Abdulhussein, M., and Ren, Y., Optimization of environmental factors to measure physiological parameters of two Rose varieties, Open J. Appl. Sci., 2017, vol. 7, p. 585. https://doi.org/10.4236/ojapps.2017.710042

    Article  CAS  Google Scholar 

  21. Holzheu, P., Krebs, M., Larasati, C., Schumacher, K., and Kummer, U., An integrative view on vacuolar pH homeostasis in Arabidopsis thaliana: Combining mathematical modeling and experimentation, Plant J., 2021, vol. 106, p. 1541. https://doi.org/10.1111/tpj.15251

    Article  CAS  PubMed  Google Scholar 

  22. Rani, P. and Singh, N., Senescence and postharvest studies of cut flowers: A critical review, J. Trop. Agric. Sci., 2014, vol. 37, p. 159.

    Google Scholar 

  23. Rogers, H.J., Is there an important role for reactive oxygen species and redox regulation during floral senescence? Plant, Cell Environ., 2012, vol. 35, p. 217. https://doi.org/10.1111/j.1365-3040.2011.02373.x

    Article  CAS  PubMed  Google Scholar 

  24. Lei, W., Geng-Guo, T., and Tong, L., Physiological, biochemical and ultrastructures of mesophyll cell changes in a senescing corolla of Lycoris longituba, J. Zhejiang Forestry College, 2009, vol. 26, p. 498. https://doi.org/10.1093/aob/mcr051

    Book  Google Scholar 

  25. Jones, M.L., Stead, A.D., and Clark, D.G., Petunia flower senescence, Petunia: Evolutionary, Developmental and Physiological Genetics, Gerats, T. and Strommer, J., Eds., New York: Springer, 2009, p. 301. https://doi.org/10.1093/aob/mcr051

    Book  Google Scholar 

  26. Sidhdharth, G. and Nivethaa, P.J., Ethylene, water and sugar—An influence in vase life of cut flowers, Biotica Research Today, 2020, vol. 2, p. 1265

    Google Scholar 

  27. van Doorn, W.G., Is petal senescence due to sugar starvation? Plant Physiol., 2004, vol. 134, p. 35. https://doi.org/10.1104/pp.103.033084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Doorn, W.G. and Woltering, E.J., Physiology and molecular biology of petal senescence, J. Experiment. Bot., 2008, vol. 59, p. 453. https://doi.org/10.1093/jxb/erm356

    Article  CAS  Google Scholar 

  29. Zhang, L. and Becker, D.F., Connecting proline metabolism and signaling pathways in plant senescence, Front. Plant Sci., 2015, vol. 6, p. 552. https://doi.org/10.3389/fpls.2015.00552

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meena, M., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., and Upadhyay, R.S., Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions, Heliyon, 2019, vol. 5, p. e02952. https://doi.org/10.1016/j.heliyon.2019.e02952

    Article  PubMed  PubMed Central  Google Scholar 

  31. Parveen, S., Altaf, F., Farooq, S., ul Haq, A., Lone, M.L., and Tahir, I., Is proline the quintessential sentinel of plants? A case study of postharvest flower senescence in Dianthus chinensis L., Physiol. Mol. Biol. Plants, 2021, vol. 27, p. 1597. https://doi.org/10.1007/s12298-021-01028-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma, N., Ma, C., Liu, Y., Shahid, M., Wang, C., and Gao, J., Petal senescence: a hormone view, J. Experiment. Bot., 2018, vol. 69, p. 719. https://doi.org/10.1093/jxb/ery009

    Article  CAS  Google Scholar 

  33. Othman, Y.A., Al-Ajlouni, M.G., A’saf, T.S., Sawalha, H.A., and Hani, M.B., Influence of gibberellic acid on the physiology and flower quality of gerbera and lily cut flowers, Int. J. Agric. Nat. Resour., 2021, vol. 48, p. 21. https://doi.org/10.7764/ijanr.v48i1.2218

    Article  Google Scholar 

  34. Ayesha, R., Hassan, I., and Abbasi, N.A., Regulation of morpho-physiological and vase quality attributes of carnation (Dianthus caryophyllus) CV. tabasco mediated by GA/sub3/, Pak. J. Bot., 2020, vol. 52, p. 1561. https://doi.org/10.30848/PJB2020-5(30)

    Article  CAS  Google Scholar 

  35. Emamverdian, A., Ding, Y., and Mokhberdoran, F., The role of salicyclic acid and gibberellin signaling in plant response to abiotic stress with an emphasis on heavy metals, Plant Signal. Behav., 2020, vol. 15, p. 777372. https://doi.org/10.1080/15592324.2020.1777372

    Article  CAS  Google Scholar 

  36. Saeed, T., Hassan, I., Abbasi, N.A., and Jilani, G., Effect of gibberellic acid on the vase life and oxidative activities in senescing cut gladiolus flowers, Plant Growth Regul., 2014, vol. 72, p. 89. https://doi.org/10.1080/15592324.2020.1777372

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Department of Plant Sciences, Kharazmi University and Iranian Research Organization for Science and Technology (Tehran, Iran) for providing the laboratory facilities and financial support for this project. Proof reading and editing by Hamyarapply Group (Tehran, Iran) is greatly appreciated.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Faezeh Khatami contributed to methodology, data curation, investigation, writing original draft. Farzaneh Najafi contributed to conceptualization, supervision, reviewing and editing, validation, and software. Fataneh Yari and Ramazan Ali Khavari-Nejad contributed to materials, methodology, reviewing and editing, supervision, and validation.

Corresponding author

Correspondence to F. Khatami.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving animals or humans as objects of research.

CONFLICT OF INTEREST

The authors declare no conflicts of interest with authorship or publication of the paper.

Additional information

Abbreviations: DPPH—1,1-diphenyl-2-picrylhydrazyl; G-POD—guaiacol peroxidase; SOD—superoxide dismutase; TR— transgenic rose; WT—wild-type rose; MTT—3-(4,5-dimethylthiazole-2-yl)-2,5- diphenyltetrazolium bromide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatami, F., Najafi, F., Yari, F. et al. Ethylene and Gibberellin: Two Key Phytohormones for Stimulating and Alleviating the Postharvest Associated Oxidative Stress in Rosa hybrida L.. Russ J Plant Physiol 70, 86 (2023). https://doi.org/10.1134/S1021443722602750

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722602750

Keywords:

Navigation