Skip to main content
Log in

Respiration, Energy Storage, and Pro-/Antioxidant Metabolism in Achillea millefolium Underground Shoot Apex during Photomorphogenesis

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Data on the energy status and activity of pro-/antioxidant metabolism during photomorphogenesis of the rhizome apex of Achillea millefolium L. were obtained. At the photophobic stage of development, etiolated rhizome apices were characterized by increased respiration intensity and energy storage rate: the share of energetically efficient cytochrome respiration was 60%, and the contribution of the alternative respiration pathway (AR) did not exceed 25% of total respiration. The etiolated apices accumulated significant amounts of prooxidants and were characterized by relatively high activity of guaiacol peroxidase and superoxide dismutase, which may be associated with the involvement of components of pro-/antioxidant metabolism in the regulation of growth and differentiation of cells and tissues in the growth cone during underground growth. A significant decrease in the rate of energy storage and an increase in the ability of an energetically low-efficient AR, the share of which was 50% of the total respiratory activity, were found in the apex of the greening sarment at the photophilic stage. The photomorphogenetic transition in the apices of greening sarments showed an increase in pro-/antioxidant metabolism: the concentration of products reacting with thiobarbituric acid (TBA-RS) and H2O2 increased by 25–30%, and the level of antioxidant enzyme activity increased by 24–86%. The photomorphogenetic transition did not lead to the emergence of new isoforms of antioxidant enzymes; however, changes in their activity depending on the phase of shoot development were revealed. The activity of the copper/zinc-containing isoform of superoxide dismutase (Cu/Zn-SOD-2) localized in chloroplasts of young leaves of sarments increased. A decrease in the content of prooxidants in the leaves and an increase in the ability of the cytochrome pathway of respiration were found, which reflects the successful adaptation of underground shoots of A. millefolium to growth in the light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Markarov, A.M. and Golovko, T.K., Growth orientation of underground shoots in perennial herbaceous plants. 3. Morphophysiology of underground shoots and sarment development, Russ. J. Plant Physiol., 1995, vol. 2, p. 630.

    Google Scholar 

  2. Maslova, S.P. and Golovko, T.K., Tropisms in underground shoots — stolons and rhizomes, Biol. Bull. Rev., 2018, vol. 78, p. 47, https://doi.org/10.1134/S207908641803009X

    Article  Google Scholar 

  3. Maslova, S.P., Dymova, O.V., and Plyusnina, S.N., Changes in the ultrastructure of plastids and the pigment complex during the morphogenesis of underground shoots of Achillea millefolium (Asteraceae), Botan. zh. 2019, vol. 104, p.1727.

  4. Reinbothe, C., Bakkouri, M.E., Buhr, F., Muraki, N., Nomata, J., Kurisu, G., Fujita, Y., and Reinbothe, S., Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction, Trends Plant Sci., 2010, vol. 15, p. 614, https://doi.org/10.1016/j.tplants.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  5. Solymosi, K. and Schoefs, B., Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms, Photosynth Res., 2010, vol. 105, p. 143, https://doi.org/10.1007/s11120-010-9568-2

    Article  CAS  PubMed  Google Scholar 

  6. Garmash, E.V., Dymova, O.V., Malyshev, R.V., Plyusnina, S.N., and Golovko, T.K., Developmental changes in energy dissipation in etiolated wheat seedlings during the greening process, Photosynthetica, 2013, vol. 51, p. 497.

    Article  CAS  Google Scholar 

  7. Garmash, E.V., Velegzhaninov, I.O., Grabelnykh, O.I., Borovik, O.A., Silina, E.V., Voinikov, V.K., and Golovko, T.K., Expression profiles of genes for mitochondrial respiratory energy-dissipating systems and antioxidant enzymes in wheat leaves during de-etiolation, J. Plant Physiol., 2017, vol. 215, p. 110. https://doi.org/10.1016/j.jplph.2017.05.023

    Article  CAS  PubMed  Google Scholar 

  8. Maslova, S.P., Tabalenkova, G.N., Malyshev, R.V., and Golovko, T.K., Seasonal changes in growth and metabolic activity of underground shoots of yarrow, Russ. J. Plant Physiol., 2013, vol. 60, p. 821. https://doi.org/10.1134/S1021443713060071

    Article  CAS  Google Scholar 

  9. Semikhatova, O.A. and Yudina, O.S., 60 years of studying the dark respiration of plants from different biomes at the Laboratory of Ecological Physiology of the Botanical Institute named after V.I. V. L. Komarova RAS, Bot. zh., 2012, vol. 97, p. 538.

    Google Scholar 

  10. Garmash, E.V., Malyshev, R.V., Shelyakin, M.A., and Golovko, T.K., Activities of respiratory pathways and the pool of nonstructural carbohydrates in greening leaves of spring wheat seedlings, Russ. J. Plant Physiol., 2014, vol. 61, p. 160. https://doi.org/10.1134/S1021443714020046

    Article  CAS  Google Scholar 

  11. Garmash, E.V., Role of mitochondrial alternative oxidase in the regulation of cellular homeostasis during development of photosynthetic function in greening leaves, Plant Biol., 2021, vol. 23, p. 221. https://doi.org/10.1111/plb.13217

    Article  CAS  PubMed  Google Scholar 

  12. Bezdelev, A.B. and Bezdeleva, T.A., Life forms of seed plants of the Russian Far East, Vladivostok: Dalnauka, 2006, 296 p.

    Google Scholar 

  13. Hansen, L.D., Hopkin, M.S., Rank, D.R., Anekonda, T.S., Breidenbach, R.W., and Criddle, R.S., The relation between plant growth and respiration: A thermodynamic model, Planta, 1994, vol. 194, p. 77. https://doi.org/10.1007/BF00201037

    Article  CAS  Google Scholar 

  14. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, p. 189. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  15. Bellincampi, D., Dipierro, N., Salvi, G., Cervone, F., and Lorenzo, G.D., Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants, Plant Physiol., 2000, vol. 122, p. 1379. https://doi.org/10.1104/pp.122.4.1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beauchamp, C. and Fridovich, I., Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, p. 276, https://doi.org/10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  17. Maehly, A.C. and Chance, B., The assay of catalases and peroxidases, Meth. Biochem. Anal., 1954, vol. 1, p. 357. https://doi.org/10.1002/9780470110171.ch14

    Article  CAS  Google Scholar 

  18. Aebi, H., Catalase in vitro, Meth. Enzymol., 1984, vol. 105, p. 121. https://doi.org/10.1002/9780470110171.ch14

    Article  CAS  Google Scholar 

  19. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, p. 248, https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  20. Miszalski, Z., Slesak, I., Niewiadomska, E., Baczek-kwinta, R., Lüttge, U., and Ratajczak, R., Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L., Plant Cell Environ., 1998, vol. 21, p. 169https://doi.org/10.1046/j.1365-3040.1998.00266.x

    Article  CAS  Google Scholar 

  21. Radotić, K., Dučić, T., and Mutavdžić, D., Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium, Environ. Exp. Bot., 2000, vol. 44, p. 105. https://doi.org/10.1016/S0098-8472(00)00059-9

    Article  PubMed  Google Scholar 

  22. Pezzoni, M., Pizarro, R.A., and Costa, C.S., Detection of catalase activity by polyacrylamide gel electrophoresis (PAGE) in cell extracts from Pseudomonas aeruginosa, Bio Protoc., 2018, vol. 8, p. 2869. https://doi.org/10.21769/BioProtoc.2869

  23. Maslova, S.P. and Tabalenkova, G.N., Hormonal status of underground shoots and distribution of assimilates in long-rhizomatous species, Vest. Nizheg. Un., 2010, vol. 5(1), p. 119.

    Google Scholar 

  24. Malyshev, R.V., Shelyakin, M.A., and Golovko, T.K., Bud dormancy breaking affects respiration and energy balance of bilberry shoots in the initial stage of growth, Russ. J. Plant Physiol., 2016, vol. 63, p. 409. https://doi.org/10.1134/S1021443716030092

    Article  CAS  Google Scholar 

  25. Noguchi, K. and Yoshida, K., Interaction between photosynthesis and respiration in illuminated leaves, Mitochondrion, 2008, vol. 8, p. 87. https://doi.org/10.1016/j.mito.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  26. Garmash, E.V., Mitochondrial respiration of the photosynthesizing cell, Russ. J. Plant Physiol., 2016, vol. 63, p. 13. https://doi.org/10.1134/S1021443715060072

    Article  CAS  Google Scholar 

  27. Ribas-Carbo, M., Robinson, S.A., Gonzàlez-Meler, M.A., Lennon, A.M., Giles, L., Siedow, J.N., and Berry, J.A., Effects of light on respiration and oxygen isotope fractionation in soybean cotyledons, Plant Cell Environ., 2000, vol. 23, p. 983. https://doi.org/10.1046/j.1365-3040.2000.00607.x

    Article  CAS  Google Scholar 

  28. Feng, H.Q., Li, H.Y., Zhou, G.M., Liang, H.G., Duan, J.G., Zhi, D.J., Li, X., and Ma, J., Influence of irradiation on cyanide-resistant respiration and AOX1 multi-gene family expression during greening of etiolated rice seedlings, Photosynthetica, 2007, vol. 45, p. 2720.

    Article  Google Scholar 

  29. Garmash, E.V., Grabelnych, O.I., Velegzhaninov, I.O., Borovik, O.A., Dalke, I.V., Voinikov, V.K., and Golovko, T.K., Light regulation of mitochondrial alternative oxidase pathway during greening of etiolated wheat seedlings, J. Plant Physiol., 2015, vol. 174, p. 75. https://doi.org/10.1016/j.jplph.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  30. Ribas-Carbo, M., Giles, L., Flexas, J., Briggs, W., and Berry, J.A., Phytochrome-driven changes in respiratory electron transport partitioning in soybean (Glycine max. L.) cotyledons, Plant Biol., 2008, vol. 10, p. 281. https://doi.org/10.1111/j.1438-8677.2008.00046.x

    Article  CAS  PubMed  Google Scholar 

  31. Igamberdiev, A.U., Eprintsev, A.T., Fedorin, D.N., and Popov, V.N., Phytochrome-mediated regulation of plant respiration and photorespiration: Phytochrome regulation of plant respiration, Plant Cell Environ., 2014, vol. 37, p. 290. https://doi.org/10.1111/pce.12155

    Article  CAS  PubMed  Google Scholar 

  32. Mullineaux, P. and Karpinski, S., Signal transduction in response to excess light: getting out of the chloroplast, Curr. Opin. Plant Biol., 2002, vol. 5, p. 43. https://doi.org/10.1016/S1369-5266(01)00226-6

    Article  CAS  PubMed  Google Scholar 

  33. Neill, S., Desikan, R., and Hancock, J., Hydrogen peroxide signalling, Curr. Opin. Plant Biol., 2002, vol. 5, p. 388. https://doi.org/10.1016/S1369-5266(02)00282-0

    Article  CAS  PubMed  Google Scholar 

  34. Maxwell, D.P., Wang, Y., and McIntosh, L., The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, p. 8271. https://doi.org/10.1073/pnas.96.14.8271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kliebenstein, D.J., Monde, R.-A., and Last, R.L., Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization, Plant Physiol., 1998, vol. 118, p. 637. https://doi.org/10.1104/pp.118.2.637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peskin, A.V., On the regulatory role of reactive oxygen species, Biokhim., 1998, vol. 63, p. 1305.

    Google Scholar 

  37. Sauer, H., Wartenberg, M., and Hescheler, J., Reactive oxygen species as intracellular messengers during cell growth and differentiation, Cell Physiol. Biochem., 2001, vol. 11, p. 173. https://doi.org/10.1159/000047804

    Article  CAS  PubMed  Google Scholar 

  38. Miller, G., Shulaev, V., and Mittler, R., Reactive oxygen signaling and abiotic stress, Physiol. Plant., 2008, vol. 133, p. 481. https://doi.org/10.1111/j.1399-3054.2008.01090.x

    Article  CAS  PubMed  Google Scholar 

  39. Tripathy, B.C. and Oelmüller, R., Reactive oxygen species generation and signaling in plants, Plant Signal. Behav., 2012, vol. 7, p. 1621. https://doi.org/10.4161/psb.22455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsukagoshi, H., Busch, W., and Benfey, P.N., Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root, Cell, 2010, vol. 143, p. 606. https://doi.org/10.1016/j.cell.2010.10.020

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state budget R&D theme Photosynthesis, Respiration, and Bioenergetics of Plants and Phototrophic Organisms (Physiological-Biochemical, Molecular-Genetic, and Ecological Aspects) (registration no. 122040600021-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Maslova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving humans and animals as research subjects.

Additional information

Translated by M. Shulskaya

Abbreviations: CR—cytochrome respiration; AR—alternative respiration pathway; LPO—lipid peroxidation; TBA-RS—products reacting with thiobarbituric acid; SOD—superoxide dismutase; GPX—guaiacol peroxidase; CAT—catalase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslova, S.P., Shelyakin, M.A., Silina, E.V. et al. Respiration, Energy Storage, and Pro-/Antioxidant Metabolism in Achillea millefolium Underground Shoot Apex during Photomorphogenesis. Russ J Plant Physiol 69, 116 (2022). https://doi.org/10.1134/S1021443722060206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722060206

Keywords:

Navigation