Skip to main content
Log in

Light Regulation of Tricarboxylic Acid Cycle Isoenzymes in Plants

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Light regulation of the tricarboxylic acid cycle (TCA) in green plant leaves is carried out by active forms of phytochrome and cryptochrome as well as other mechanisms that exhibit an inhibitory effect on the activity of a number of mitochondrial isoenzymes. Phytochrome signal transduction into the cell nucleus is carried out by redistribution of free calcium cations between cell compartments, which leads to the activation of calmodulins. Interacting with Ca2+-cam-dependent kinase, calmodulins provide control over the functioning of the transcription factor PIF3, which regulates the expression of genes for isoenzymes of 2-oxoglutarate dehydrogenase, succinate dehydrogenase, aconitate hydratase, malate dehydrogenase, fumarate hydratase, and citrate synthase in green leaves of plants, thus controlling the rate of functioning of the TCA. The high methyl status of the promoters of the genes encoding these enzymes leads to the suppression of their transcription, which suggests an epigenetic mechanism for light regulation of their expression. Changes in the methyl status of individual CG dinucleotides in the CpG islands of gene promoters regulate their functioning in plant leaves under different lighting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Escobar, M.A., Franklin, K.A., Svensson, A.S., Salter, M.G., Whitelam, G.C., and Rasmusson, A.G., Light Regulation of the Arabidopsis Respiratory Chain. Multiple Discrete Photoreceptor Responses Contribute to Induction of Type II NAD(P)H Dehydrogenase Genes, Plant Physiol., 2004, vol. 136, p. 2710.https://doi.org/10.1104/pp.104.046698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lyubimov, V.Yu. and Kreslavskii, V.D., Phytochrome B-dependent Regulation of Reductive Phase of Photosynthetic Carbon Assimilation, Rus. J. Plant Physiol., 2017, vol. 64, p. 776, https://doi.org/10.1134/S1021443717040082

    Article  CAS  Google Scholar 

  3. Igamberdiev, A.U., Eprintsev, A.T., Fedorin, D.N., and Popov, V.N., Phytochrome-mediated regulation of plant respiration and photorespiration, Plant Cell Environ., 2014, vol. 37, p. 290.https://doi.org/10.1111/pce.12155

    Article  CAS  PubMed  Google Scholar 

  4. Lyubimov, V.Yu., Kreslavski, V.D., and Shmarev, A.N., Photoregulation of the Cytoplasmic PGA Dehydrogenase Complex in Wheat Leaves, Rus. J. Plant Physiol., 2020, vol. 67, p. 797, https://doi.org/10.1134/S102144372005009X

    Article  CAS  Google Scholar 

  5. Popov, V.N., Fedorin, D.N., and Eprintsev, A.T., Light Regulation of Succinate Dehydrogenase Expression in Arabidopsis thaliana Leaves, Rus. J. Plant Physiol., 2007, vol. 54, p. 360, https://doi.org/10.1134/S1021443707030107

    Article  CAS  Google Scholar 

  6. Eprintsev, A.T., Fedorin, D.N., and Sazonova, O.V., Phytochrome-Dependent Regulation of Fumarate Hydratase Activity in Maize Green Leaves, Rus. J. Plant Physiol., 2015, vol. 62, p. 441. https://doi.org/10.1134/S102144371504007X

    Article  CAS  Google Scholar 

  7. Eprintsev, A.T., Fedorin, D.N., Cherkasskikh, M.V., and Igamberdiev, A.U., Regulation of expression of the mitochondrial and cytosolic forms of aconitase in maize leaves via phytochrome, Plant Physiol. Biochem., 2020, vol. 146, p. 157.https://doi.org/10.1016/j.plaphy.2019.11.018

    Article  CAS  PubMed  Google Scholar 

  8. Popov, V.N., Possible role of free oxidation processes in the regulation of reactive oxygen species production in plant mitochondria, Biochem. Soc. Trans., 2003, vol. 31, p. 1316.https://doi.org/10.1042/bst0311316

    Article  CAS  PubMed  Google Scholar 

  9. Maltseva, E.V., Shatskikh, A.S., Yeprintsev, A.T., and Popov, V.N., Expression regulation of uncoupled and uncoupled respiration pathways in tomato mitochondria, Bulletin of VSU. Series: chemistry. biology, pharmacy, 2012, vol. 2, p. 165.

  10. Igamberdiev, A.U. and Gardestrom, P., Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves, Biochim. Biophys. Acta, Bioenerg., 2003, vol. 1606, p. 117, https://doi.org/10.1016/s0005-2728(03)00106-3

    Article  CAS  Google Scholar 

  11. Fernie, A.R., Carrari, F., and Sweetlove, L.J., Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport, Curr. Opin. Plant Biol., 2004, vol. 7, p. 254, https://doi.org/10.1016/j.pbi.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  12. Hanning, I. and Heldt, H.W., On the function of mitochondrial metabolism during photosynthesis in spinach leaves (Spinacia oleracea L.). Partitioning between respiration and export of redox equivalents and precursors for nitrate assimilation products, Plant Physiology, 1993, vol. 103, p. 1147, https://doi.org/10.1104/pp.103.4.1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eprintsev, A.T., Fedorin, D.N., Anokhina, G.B., and Sedykh, A.V., Molecular and biochemical aspects of light regulation of 2-oxoglutarate dehydrogenase in plants, Rus. J. Plant Physiol., 2020, vol. 67, p. 206, https://doi.org/10.31857/S0015330320010054

    Article  Google Scholar 

  14. Eprintsev, A.T., Fedorin, D.N., Dobychina, M.A., and Igamberdiev, A.U., Regulation of expression of the mitochondrial and peroxisomal forms of citrate synthase in maize during germination and in response to light, Plant Sci., 2018, vol. 272, p. 157, https://doi.org/10.1016/j.plantsci.2018.04.017

    Article  CAS  PubMed  Google Scholar 

  15. Quail, P.H., Phytochome-interacting factors. In Light and Plant Development, Oxford, UK: Blackwell Publishing Ltd, 2007, p. 81, https://doi.org/10.1104/pp.17.01384

    Book  Google Scholar 

  16. Kreslavski, V.D., Carpentier, R., Klimov, V.V., and Allakhverdiev, S.I., Transduction mechanisms of photoreceptor signals in plant cells, J. Photochem. Photobiol., 2009, vol. 10, p. 63, https://doi.org/10.1016/j.jphotochemrev.2009.04.001

    Article  CAS  Google Scholar 

  17. Klose, C., Viczian, A., Kircher, S., Schafer, E., and Nagy, F., Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors, New Phytol., 2015, vol. 206, p. 965, https://doi.org/10.1111/nph.13207

    Article  CAS  PubMed  Google Scholar 

  18. Oh, S. and Montgomery, B.L., Phytochrome-dependent coordinate control of distinct aspects of nuclear and plastid gene expression during anterograde signaling and photomorphogenesis, Front Plant Sci., 2014, vol. 30: e171, https://doi.org/10.3389/fpls.2014.00171

    Article  Google Scholar 

  19. Kircher, S., Gil, P., Kozma-Bognar, L., Fejes, E., Speth, V., Husselstein-Muller, T., Bauer, D., Adam, E., Schafer, E., and Nagy, F., Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm, Plant Cell., 2002, vol. 14, p. 1541, https://doi.org/10.1105/tpc.001156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bowler, C., Neuhaus, G., Yamagata, H., and Chua, N.H., Cyclic GMP and calcium mediate phytochrome phototransduction, Cell, 1994, vol. 77, p. 73, https://doi.org/10.1016/0092-8674(94)90236-4

    Article  CAS  PubMed  Google Scholar 

  21. Neuhaus, G., Bowler, C., Hiratsuka, K., Yamagata, H., and Chua, N.H., Phytochrome-regulated repression of gene expression requires calcium and cGMP, EMBO J., 1997, vol. 16, p. 2552, https://doi.org/10.1093/emboj/16.10.2554

    Article  Google Scholar 

  22. Li, J., Li, G., Wang, H., and Denga, X.W., Phytochrome signaling mechanisms, Arabidopsis Book, 2011, vol. 9: e0148, https://doi.org/10.1199/tab.0148

    Article  PubMed  PubMed Central  Google Scholar 

  23. Echevarria, W., Leite, M.F., Guerra, M.T., Zipfel, W.R., and Nathanson, M.H., Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum, Nat. Cell Biol., 2003, vol. 5, P. 440, https://doi.org/10.1038/ncb980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leite, M.F., Thrower, E.C., Echevarria, W., Koulen, P., Hirata, K., Bennett, A.M., Ehrlich, B.E., Nathanson, and M.H., Nuclear and cytosolic calcium are regulated independently, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, p. 2975. https://doi.org/10.1073/pnas.0536590100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiong, T.C., Jauneau, A., Ranjeva, R., and Mazars, C., Isolated plant nuclei as mechanical and thermal sensors involved in calcium signaling, Plant J., 2004, vol. 40, p. 12, https://doi.org/10.1111/j.1365-313X.2004.02184.x

    Article  CAS  PubMed  Google Scholar 

  26. Eprintsev, A.T., Fedorin, D.N., and Igamberdiev, A.U., Ca2+ is involved in phytochrome A-dependent regulation of the succinate dehydrogenase gene sdh1-2 in Arabidopsis, J. Plant Physiol., 2013, vol. 170, p. 1349, https://doi.org/10.1016/j.jplph.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  27. Eprintsev, A.T., Selivanova, N.V., Fedorin, D.N., Bashkin, S.S., Selezneva, E.A., Dadakina, I.V., and Machmud Ali, S., The Role of Calcium Cations in the Mechanism of Phytochrome-Dependent Regulation of the sdh1-2 Gene Expression and Succinate Dehydrogenase Activity in Maize Leaves, Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology, 2012, vol. 29, p. 310, https://doi.org/10.1134/S1990747812030051

    Article  Google Scholar 

  28. Eprintsev, A.T., Fedorin, D.N., Karabutova, L.A., and Pokusina, T.A., Light Regulation of Succinate Dehydrogenase Subunit B Gene SDH2-3 Expression in Maize Leaves, Rus. J. Plant Physiol., 2016, vol. 63, p. 505, https://doi.org/10.1134/S102144371604004X

    Article  CAS  Google Scholar 

  29. Eprintsev, A.T., Fedorin, D.N., Sazonova, O.V., and Igamberdiev, A.U., Light inhibition of fumarase in Arabidopsis leaves is phytochrome A-dependent and mediated by calcium, Plant Physiology and Biochemistry, 2016, vol. 102, p. 161, https://doi.org/10.1016/j.plaphy.2016.02.028

    Article  CAS  PubMed  Google Scholar 

  30. Galon, Y., Finkler, A., and Fromm, H., Calcium-regulated transcription in plants, Molecular Plant., 2010, vol. 3, p. 653, https://doi.org/10.1093/mp/ssq019

    Article  CAS  PubMed  Google Scholar 

  31. Enslen, H., Tokumitsu, H., and Soderling, T.R., Phosphorylation of CREB by CaM-kinase IV activated by CaM-kinase IV kinase, Biochem. Biophys. Res. Commun., 1995, vol. 207, p. 1038, https://doi.org/10.1006/bbrc.1995.1289

    Article  CAS  PubMed  Google Scholar 

  32. Crivici, A. and Ikura, M., Molecular and structural basis of target recognition by calmodulin, Annu. Rev. Biophys. Biomol. Struct., 1995, vol. 24, p. 85, https://doi.org/10.1146/annurev.bb.24.060195.000505

    Article  CAS  PubMed  Google Scholar 

  33. Popov, V.N., Eprintsev, A.T., Fedorin, D.N., and Igamberdiev, A.U., Succinate dehydrogenase in Arabidopsis thaliana is regulated by light via phytochrome A, FEBS Letters, 2010, vol. 584, p. 199, https://doi.org/10.1016/j.febslet.2009.11.057

    Article  CAS  PubMed  Google Scholar 

  34. Castillon, A., Shen, H., and Huq, E., Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks, Trends Plant Sci., 2007, vol. 12, p. 514, https://doi.org/10.1016/j.tplants.2007.10.001

    Article  CAS  PubMed  Google Scholar 

  35. Shen, H., Zhu, L., Castillon, A., Majee, M., Downie, B., and Huq, E., Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes, Plant Cell, 2008, vol. 20, p. 1586, https://doi.org/10.1105/tpc.108.060020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ezer, D., Shepherd, S.J.K., Brestovitsky, A., Dickinson, P., Cortijo, S., Charoensawan, V., Box, M.S., Biswas, S., Jaeger, K.E., and Wigge, P.A., The G-box transcriptional regulatory code in Arabidopsis, Plant Physiol., 2017, vol. 175, p. 628, https://doi.org/10.1104/pp.17.01086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oh, E., Kang, H., Yamaguchi, S., Park, J., Lee, D., Kamiya, Y., and Choi, G., Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR3-LIKE5 during seed germination in Arabidopsis, Plant Cell., 2009, vol. 21, p. 403, https://doi.org/10.1105/tpc.108.064691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martínez-García, J.F., Huq, E., and Quail, P.H., Direct targeting of light signals to a promoter element-bound transcription factor, Science, 2000, vol. 288, p. 859, https://doi.org/10.1126/science.288.5467.859

    Article  PubMed  Google Scholar 

  39. Shin, J., Park, E., and Choi, G., PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis, Plant J., 2007, vol. 49, p. 981, https://doi.org/10.1111/j.1365-313X.2006.03021.x

    Article  CAS  PubMed  Google Scholar 

  40. Antequera, F. and Bird, A., Number of CpG islands and genes in human and mouse, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, p. 11995, https://doi.org/10.1073/pnas.90.24.11995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kass, S.U., Landsberger, N., and Wolffe, A.P., DNA methylation directs a time-dependent repression of transcription initiation, Curr. Biol., 1997, vol. 7, p. 157, https://doi.org/10.1016/s0960-9822(97)70086-1

    Article  CAS  PubMed  Google Scholar 

  42. Comb, M. and Goodman, H.M., CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2, Nucleic Acids Res., 1990, vol. 18, p. 3975, https://doi.org/10.1093/nar/18.13.3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gu, C., Guo, Z.-H., Hao, P.-P., Wang, G.-M., Jin, Z.-M., and Zhang, S.-L., Multiple regulatory roles of AP2/ERF transcription factor in angiosperm, Bot. Stud., 2017, vol. 58, p. 6, https://doi.org/10.1186/s40529-016-0159-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu, J., Zhou, S., Gong, X., Song, Y., van Nocker, S., Ma, F., and Guan, Q., Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple, Plant Biotechnol. J., 2018, vol. 16, p. 672, https://doi.org/10.1111/pbi.12820

    Article  CAS  PubMed  Google Scholar 

  45. Liang, L., Chang, Y., Lu, J., Wu, X., Liu, Q., Zhang, W., Su, X., and Zhang, B., Global methylomic and transcriptomic analyses reveal the broad participation of DNA methylation in daily gene expression regulation of Populus trichocarpa, Front. Plant Sci., 2019, vol. 10, p. 243, https://doi.org/10.3389/fpls.2019.00243

    Article  PubMed  PubMed Central  Google Scholar 

  46. Eprintsev, A.T., Fedorin, D.N., Karabutova, L.A., Zenishcheva, M.A., Igamberdiev, A.U., Expression of the genes encoding A and B subunits of succinate dehydrogenase in maize is regulated via methylation of their promoters, Plant Biotech. Kingston, Canada: Queens University, 2016, p. 58.

  47. Bewick, A.J. and Schmitz, R.J., Gene body DNA methylation in plants, Curr. Opin. Plant Biol., 2017, vol. 36, p. 103, https://doi.org/10.1016/j.pbi.2016.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Teixeira, F.K. and Colot, V., Gene body DNA methylation in plants: a means to an end or an end to a means?, EMBO J., 2009, vol. 28, p. 997, https://doi.org/10.1038/emboj.2009.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, H., Lang, Z., and Zhu, J.K., Dynamics and function of DNA methylation in plants, Nat. Rev. Mol. Cell Biol., 2018, vol. 19, p. 489, https://doi.org/10.1038/s41580-018-0016-z

    Article  CAS  PubMed  Google Scholar 

  50. Lau, O.S. and Deng, X.W. Plant hormone signaling lightens up: integrators of light and hormones, Curr. Opin. Plant Biol., 2010, vol. 13, p. 571, https://doi.org/10.1016/j.pbi.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  51. Enslen, H., Tokumitsu, H., and Soderling, T.R., Phosphorylation of CREB by CaM-kinase IV activated by CaM-kinase IV kinase, Biochem. Biophys. Res. Commun., 1995, vol. 207, p. 1038, https://doi.org/10.1006/bbrc.1995.1289

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, H., Lang, Z., and Zhu, J.K., Dynamics and function of DNA methylation in plants, Nat. Rev. Mol. Cell Biol., 2018, vol. 19, p. 489, https://doi.org/10.1038/s41580-018-0016-z

    Article  CAS  PubMed  Google Scholar 

  53. Finnegan, E.J. and Kovac, K.A., DNA methyltransfereses, Plant Mol. Biol., 2000, vol. 43, p. 189, https://doi.org/10.1023/A1006427226972

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-04-00296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Eprintsev.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving humans and animals as subjects.

Additional information

Abbreviations: AH—aconitate hydratase; FH—fumarate hydratase; CS—citrate synthase; MDH—malate dehydrogenase; SDH—succinate dehydrogenase; ETC—electron transport chain; 2OGDH—2-oxoglutarate dehydrogenase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorin, D.N., Eprintsev, A.T. & Igamberdiev, A.U. Light Regulation of Tricarboxylic Acid Cycle Isoenzymes in Plants. Russ J Plant Physiol 69, 110 (2022). https://doi.org/10.1134/S1021443722060048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722060048

Keywords:

Navigation