Skip to main content
Log in

Effect of Lactone- and Ketone-Containing Brassinosteroids on Photosynthetic Activity of Barley Leaves during Aging

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

A comparison was made of the physiological activity of brassinosteroids (BS) of different chemical structures—lactone-containing 24-epibrassinolide (EBL) and ketone-containing brassinosteroid 24-epicastasterone (ECS)—during dark aging of cut barley (Hordeum vulgare L.) leaves. The functional state of the photosynthetic apparatus, the amount of photosynthetic pigments, the content of lipid peroxidation products, and gene expression of HvS40 (senescence marker) were assessed. The separated barley leaves were incubated on solutions of EBL and ECS in the concentration range of 0.01–1 µM in Petri dishes on filter paper. Synthetic cytokinin 6-benzylaminopurine (BAP) at a 10 μM concentration was used as a positive control, and distilled water was used as a negative control. Petri dishes with leaves were kept in the dark for 5 days. Measurements of the analyzed parameters were carried out on the first, third, and fifth days from the beginning of incubation, mainly in the middle part of the leaf plate. ECS at a concentration of 1 μM reduced oxidative stress by the fifth day of incubation to a greater extent than EBL at a similar concentration. Regarding maintenance of chlorophyll a (Chl a) levels, 24-epicastasterone (1 μM) was more effective than 24-epibrassinolide. It was shown that exogenous brassinosteroids showed a protective effect on the main photochemical processes of the second photosystem during aging of barley leaves. Moreover, when assessing the coefficient of nonphotochemical quenching (qN), indicators of regulated (Y(NPQ)) and nonregulated (Y(NO)) energy dissipation, the ECS showed a more pronounced protective effect for the second photosystem compared to EBL. It was found that treatment with brassinosteroids reduced the level of gene expression of HvS40, a senescence marker on the fifth day of incubation, which was especially characteristic for the ketone-containing brassinosteroid. Thus, it can be concluded that the ketone-containing brassinosteroid not only exhibits high biological activity but, in terms of a number of parameters, is also more effective than the lactone-containing brassinosteroid in reducing the damage caused by aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Woo, H.R., Koo, H.J., Kim, J., Jeong, H., Yang, J.O., Lee, H., Jun, J.H., Choi, S.H., Park, S.J., Kang, B., Kim, Y.W., Phee, B.K., Kim, J.H., Seo, C., Park, C., et al., Programming of plant leaf senescence with temporal and inter-organellar coordination of transcriptome in Arabidopsis, Plant Physiol., 2016, vol. 171, p. 452. https://doi.org/10.1104/pp.15.01929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Woo, H.R., Kim, H.J., Kim, P.O., and Nam, H.G., Leaf senescence: systems and dynamics aspects, Annu. Rev. Plant Biol., 2019, vol. 70, p. 347. https://doi.org/10.1146/annurev-arplant-050718-095859

    Article  CAS  PubMed  Google Scholar 

  3. Krieger-Liszkay, A., Krupinska, K., and Shimakawa, G., The impact of photosynthesis on initiation of leaf senescence, Physiol. Plant., 2019, vol. 166, no. 1, p. 148. https://doi.org/10.1111/ppl.12921

    Article  CAS  PubMed  Google Scholar 

  4. Lakhvich, F., Khripach, V., and Zhabinskii, V., The synthesis pg brassinosteroids? A new class of plant hormones, Russ. Chem. Rev., 1991, vol. 60, no. 6, p. 658. https://doi.org/10.1070/RC1991v060n06ABEH001100

    Article  Google Scholar 

  5. Khripach, V., Zhabinskii, V., and Groot, A., Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century, Ann. Bot., 2000, vol. 86, no. 3, p. 441. https://doi.org/10.1006/anbo.2000.1227

    Article  CAS  Google Scholar 

  6. Litvinovskaya, R.P., The use of phytohormonal steroids in potato growing technology, Materialy Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem “Aktual’nye problemy kartofelevodstva: fundamental’nye i prikladnye aspekty” (Proc. All-Russ. Sci.-Pract. Conf. with Int. Participation “Fundamental and Applied Aspects of Potato Growing”), Tomsk, 2018, p. 15.

  7. Kanwar, M.K., Bajguz, A., Zhou, J., and Bhardwaj, R.J., Analysis of brassinosteroids in plants, J. Plant Growth Regul., 2017, vol. 36, p. 1002. https://doi.org/10.1007/s00344-017-9732-4

  8. Fedina, E.O., Yarin, A.Y., Mukhitova, F.K., Blufard, A.S., and Chechetkin, I.R., Brassinosteroid-induced changes of lipid composition in leaves of Pisum sativum L. during senescence, Steroids, 2017, vol. 117, p. 25. https://doi.org/10.1016/j.steroids.2016.10.009

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, Y.J., Xu, R.J., and Luo, W.H., Inhibitory effects of abscisic acid on epibrassinolide-induced senescence of detached cotyledons in cucumber seedlings, Chin. Sci. Bull., 1990, vol. 35, p. 928.

    Article  CAS  Google Scholar 

  10. Saglam-Cag, S., The effect of epibrassinolide on senescence in wheat leaves, Biotechnol. Biotechnol. Equip., 2007, vol. 21, p. 63. https://doi.org/10.1080/13102818.2007.10817415

    Article  CAS  Google Scholar 

  11. Zhu, T., Tan, W.-R., Deng, X.-G., Zheng, T., Zhang, D.-W., and Lin, H.-H., Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit, Postharvest Biol. Technol., 2015, vol. 100, p. 196. https://doi.org/10.1016/j.postharvbio.2014.09.016

    Article  CAS  Google Scholar 

  12. Yin, W., Yin, Y., Dong, N., Niu, M., Zhang, X., Li, L., Liu, J., Liu, B., and Tong, H., Brassinosteroid-regulated plant growth and development and gene expression in soybean, Crop J., 2019, vol. 7, p. 411. https://doi.org/10.1016/j.cj.2018.10.003

    Article  Google Scholar 

  13. Assis-Gomes, M.M., Pinheiro, D.T., Bressan-Smith, R.E., and Campostrini, E., Exogenous brassinosteroid application delays senescence and promotes hyponasty in Carica papaya L. leaves, Theor. Exp. Plant Physiol., 2018, vol. 30, p. 193. https://doi.org/10.1007/s40626-018-0114-5

    Article  CAS  Google Scholar 

  14. Chory, J., Nagpal, P., and Peto, C.A., Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis, Plant Cell, 1991, vol. 3, p. 445. https://doi.org/10.1105/tpc.3.5.445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Efimova, M.V., Kusnetsov, V.V., Kravtsov, A.K., Bartashevich, D.A., Karnachuk, R.A., Kovtun, I.S., and Kuznetsov, Vl.V., Expression of plastid genome and development of Arabidopsis thaliana with disturbed synthesis of brassinosteroids, Russ. J. Plant Physiol., 2012, vol. 59, no. 1, p. 28.

    Article  CAS  Google Scholar 

  16. Efimova, M.V., Litvinovskaya, R.P., Medvedeva, Yu.V., Murgan, O.K., Sauchuk, A.L., Kuznetsov, V.V., and Khripach, V.A., Content and balance of endogenous brassinosteroids in potato microclones is determined by the organ specificity and term of ripening variety, Dokl. Biol. Sci., 2019, vol. 485, no. 1, p. 33. https://doi.org/10.1134/S0012496619020017

    Article  CAS  PubMed  Google Scholar 

  17. Kulaeva, O.N., Tsitokininy, ikh struktura i funktsiya (The Structure and Function of Cytokinins), Moscow: Nauka, 1973.

  18. Buege, J.A. and Aust, S.D., Microsomal lipid peroxidation, Methods Enzymol., 1978, vol. 52, p. 302.

    Article  CAS  Google Scholar 

  19. Lichtenthaler, H.K., Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, p. 350. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  20. Pfundel, E., JUNIOR-PAM: Teaching Chlorophyll Fluorometer: Operator’s Guide, Pfullingen: Heinz Walz, 2007, p. 58.

  21. Kovtun, I.S. and Efimova, M.V., Selection of primers of the constitutive gene for the polymerase chain reaction after reverse transcription, Vestn. Tomsk. Gos. Univ., Biol., 2013, no. 2 (22), p. 160.

  22. Hua, W., Zhu, J., Shang, Y., Wang, J., Jia, Q., and Yang, J., Identification of suitable reference genes for barley gene expression under abiotic stresses and hormonal treatments, Plant Mol. Biol. Rep., 2015, vol. 33, p. 1002. https://doi.org/10.1007/s11105-014-0807

    Article  CAS  Google Scholar 

  23. Kolomeichuk, L.V., Efimova, M.V., Zlobin, I.E., Kreslavski, Vl.D., Murgan, O.K., Kovtun, I.S., Khripach, Vl.A., Kuznetsov, Vl.V., and Allakhverdiev, S.I., 24-Epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants, Photosynth. Res., 2020, vol. 146, p. 151. https://doi.org/10.1007/s11120-020-00708-z

    Article  CAS  PubMed  Google Scholar 

  24. Castorina, G. and Consonni, G., The role of brassinosteroids in controlling plant height in Poaceae: a genetic perspective, Int. J. Mol. Sci., 2020, vol. 21, p. 1191. https://doi.org/10.3390/ijms21041191

    Article  CAS  PubMed Central  Google Scholar 

  25. Clouse, S.D., Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development, Plant Cell, 2011, vol. 23, p. 1219. https://doi.org/10.1105/tpc.111.084475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nolan, T., Chen, J., and Yin, Y., Cross-talk of brassinosteroid signaling in controlling growth and stress responses, Biochem. J., 2017, vol. 474, p. 2641. https://doi.org/10.1042/BCJ20160633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, Y., Li, K., Zhu, K., Tian, Y., Yu, Q., Zhang, W., and Wang, Z., Effect of exogenous plant hormones on agronomic and physiological performance of a leaf early-senescent rice mutant osled, Plant Growth Regul., 2020, vol. 92, p. 517. https://doi.org/10.1007/s10725-020-00653-w

    Article  CAS  Google Scholar 

  28. Sharma, A., Shahzad, B., Kumar, V., Kohli, S.K., Sidhu, G.P.S., Bali, A.S., Handa, N., Kapoor, D., Bhardwaj, R., and Zheng, B., Phytohormones regulate accumulation of osmolytes under abiotic stress, Biomolecules, 2019, vol. 9, no. 7, p. 285. https://doi.org/10.3390/biom9070285

    Article  CAS  PubMed Central  Google Scholar 

  29. Rasool, S., Hameed, A., Azooz, M.M., Rehman, M., Siddiqi, T.O., and Ahmad, P., Salt stress: causes, types and responses of plants, in Ecophysiology and Responses of Plants Under Salt Stress, New York: Springer-Verlag, 2013, p. 1.

    Google Scholar 

  30. Alche, J.D., A concise appraisal of lipid oxidation and lipoxidation in higher plants, Redox Biol., 2019, vol. 23, p. 1. https://doi.org/10.1016/j.redox.2019.101136

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, project no. 19-34-50076 mol_nr.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Kovtun.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Abbreviations: BL—brassinolide; BS—brassinosteroids; EBL—24-epibrassinolide; ECS—24-epicastasterone; FLC—chlorophyll fluorescence; TBARS—thiobarbituric acid reactive substances.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovtun, I.S., Kukharenko, N.E., Kusnetsov, V.V. et al. Effect of Lactone- and Ketone-Containing Brassinosteroids on Photosynthetic Activity of Barley Leaves during Aging. Russ J Plant Physiol 68, 440–450 (2021). https://doi.org/10.1134/S1021443721030080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721030080

Keywords:

Navigation