Skip to main content
Log in

Post-Anoxia in Plants: Reasons, Consequences, and Possible Mechanisms

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

One of the adverse factors affecting plants is oxygen deficiency, which develops as a result of excessive waterlogging and flooding. In a natural habitat, following a period of oxygen deficiency, aerobic conditions are usually restored, resulting in exposure of plants to post-anoxic oxidation conditions. The endogenous reduced metabolites and soil toxins accumulated during oxygen deficiency begin to be oxidized by atmospheric oxygen, which leads to the generation of reactive oxygen species (ROS) and the development of damage that can cause the death of a plant even if it has survived anoxic conditions. Recent studies discussed in the review indicate that the main mechanisms of adaptation to the post-anoxic period are mainly the biosynthesis of antioxidants and the effective operation of antioxidant system, the activation of alternative oxidase and detoxification of anaerobic metabolites. Ethylene-dependent transcription factors ERF-VII, which are also involved in the regulation of adaptation directly to oxygen deficiency, as well as phytohormones, such as jasmonic and abscisic acids, play an important role in ensuring the regulation of adaptation to post-anoxic conditions. Post-anoxia should not be considered as an independent stressor, since it represents a complex effect (the effects of anoxia, oxidative stress, and desiccation together contribute to the development of damage), and adaptation mechanisms and their regulation have many common elements with adaptation to oxygen deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Hendry, G.A.F., Oxygen and environmental stress in plants: and evolutionary context, Proc. R. Soc. Edinb., B: Biol., 1994, vol. 102, p. 155. https://doi.org/10.1017/S026972700001407X

    Article  Google Scholar 

  2. Borisjuk, L. and Rolletschek, H., The oxygen status of the developing seed, New Phytol., 2009, vol. 182, p. 17. https://doi.org/10.1111/j.1469-8137.2008.02752.x

    Article  CAS  PubMed  Google Scholar 

  3. Van Dongen, J.T., Schurr, U., Pfister, M., and Geigenberger, P., Phloem metabolism and function have to cope with low internal oxygen, Plant Physiol., 2003, vol. 131, p. 1529. https://doi.org/10.1104/pp.102.017202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Voesenek, L.A.C.J. and Bailey-Serres, J., Flood adaptive traits and processes: an overview, New Phytol., 2015, vol. 206, p. 57. https://doi.org/10.1111/nph.13209

    Article  CAS  PubMed  Google Scholar 

  5. Bailey-Serres, J. and Voesenek, L.A.C.J., Flooding stress: acclimations and genetic diversity, Annu. Rev. Plant Biol., 2008, vol. 59, p. 313. https://doi.org/10.1146/annurev.arplant.59.032607.092752

    Article  CAS  PubMed  Google Scholar 

  6. Chirkova, T. and Yemelyanov, V., The study of plant adaptation to oxygen deficiency in Saint Petersburg University, Biol. Commun., 2018, vol. 63, p. 17. https://doi.org/10.21638/spbu03.2018.104

    Article  Google Scholar 

  7. Chirkova, T.V., Puti adaptatsii rastenii k gipoksii i anoksii (Pathways of Plant Adaptation to Hypoxia and Anoxia), Leningrad: Leningrad Gos. Univ., 1988.

  8. Gupta, K.J., Zabalza, A., and van Dongen, J.T., Regulation of respiration when the oxygen availability changes, Physiol. Plant., 2009, vol. 137, p. 383. https://doi.org/10.1111/j.1399-3054.2009.01253.x

    Article  CAS  PubMed  Google Scholar 

  9. Chirkova, T.V., Plant and anaerobiosis, Vestn. St. Petersburg Univ., Ser. 3, Biol., 1998, no. 2, p. 41.

  10. Drew, M.C., Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, p. 223. https://doi.org/10.1146/annurev.arplant.48.1.223

    Article  CAS  PubMed  Google Scholar 

  11. Biemelt, S., Keetman, U., and Albrecht, G., Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings, Plant Physiol., 1998, vol. 116, p. 651. https://doi.org/10.1104/pp.116.2.651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Dongen, J.T. and Licausi, F., Oxygen sensing and signaling, Annu. Rev. Plant Biol., 2015, vol. 66, p. 345. https://doi.org/10.1146/annurev-arplant-043014-114813

    Article  CAS  PubMed  Google Scholar 

  13. Vartapetian, B.B. and Jackson, M.B., Plant adaptations to environmental stress, Ann. Bot., 1997, vol. 79, p. 3. https://doi.org/10.1093/oxfordjournals.aob.a010303

    Article  CAS  Google Scholar 

  14. Fukao, T., Kennedy, R.A., Yamasue, Y., and Rumpho, M.E., Genetic and biochemical analysis of anaerobically-induced enzymes during seed germination of Echinochloa crus-galli varieties tolerant and intolerant of anoxia, J. Exp. Bot., 2003, vol. 54, p. 1421. https://doi.org/10.1093/jxb/erg140

    Article  CAS  PubMed  Google Scholar 

  15. Boyer, J.S., Plant productivity and environment, Science, 1982, vol. 218, p. 443. https://doi.org/10.1126/science.218.4571.443

    Article  CAS  PubMed  Google Scholar 

  16. Bailey-Serres, J., Lee, S.C., and Brinton, E., Waterproofing crops: effective flooding survival strategies, Plant Physiol., 2012, vol. 160, p. 1698. https://doi.org/10.1104/pp.112.208173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crawford, R.M.M., Walton, J.C., and Wollenweberratzer, B., Similarities between post-ischemic injury to animal tissues and post-anoxic injury in plants, Proc. R. Soc. Edinb., B: Biol., 1994, vol. 102, p. 325. https://doi.org/10.1017/S0269727000014317

    Article  Google Scholar 

  18. Das, A. and Uchimiya, H., Oxygen stress and adaptation of a semi-aquatic plant: rice (Oryza sativa), J. Plant Res., 2002, vol. 115, p. 315.

    Article  CAS  PubMed  Google Scholar 

  19. Blokhina, O., Virolainen, E., and Fagerstedt, K.V., Antioxidants, oxidative damage and oxygen deprivation stress: a review, Ann. Bot., 2003, vol. 91, p. 179. https://doi.org/10.1093/aob/mcf118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rawyler, A., Pavelic, D., Gianinazzi, C., Oberson, J., and Braendle, R., Membrane lipid integrity relies on a threshold of ATP production rate in potato cell cultures submitted to anoxia, Plant Physiol., 1999, vol. 120, p. 293. https://doi.org/10.1104/pp.120.1.293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pavelic, D., Arpagaus, S., Rawyler, A., and Brändle, R., Impact of post-anoxia stress on membrane lipids of anoxia-pretreated potato cells a re-appraisal, Plant Physiol., 2000, vol. 124, p. 1285. https://doi.org/10.1104/pp.124.3.1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Armstrong, W., Cousins, D., Armstrong, J., Turner, D.W., and Beckett, P.M., Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis,Ann. Bot., 2000, vol. 86, p. 687. https://doi.org/10.1006/anbo.2000.1236

    Article  Google Scholar 

  23. Mommer, L. and Visser, E.J.W., Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity, Ann. Bot., 2005, vol. 96, p. 581. https://doi.org/10.1093/aob/mci212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Voesenek, L.A.C.J., Colmer, T.D., Pierik, R., Millenaar, F.F., and Peeters, A.J.M., How plants cope with complete submergence, New Phytol., 2006, vol. 170, p. 213. https://doi.org/10.1111/j.1469-8137.2006.01692.x

    Article  CAS  PubMed  Google Scholar 

  25. Gibbs, J. and Greenway, H., Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism, Funct. Plant Biol., 2003, vol. 30, p. 1. https://doi.org/10.1071/PP98095

    Article  CAS  PubMed  Google Scholar 

  26. Chirkova, T.V., Walter, G., Leffler, S., and Novitskaya, L.O., Chloroplasts and mitochondria in the leaves of wheat and rice seedlings exposed to anoxia and long-term darkness: some characteristics of organelle state, Russ. J. Plant Physiol., 1995, vol. 42, p. 321.

    CAS  Google Scholar 

  27. Blokhina, O. and Fagerstedt, K.V., Oxidative metabolism, ROS and NO under oxygen deprivation, Plant Physiol. Biochem., 2010, vol. 48, p. 359. https://doi.org/10.1016/j.plaphy.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  28. Blokhina, O.B., Chirkova, T.V., and Fagerstedt, K.V., Anoxic stress leads to hydrogen peroxide formation in plant cells, J. Exp. Bot., 2001, vol. 52, p. 1179. https://doi.org/10.1093/jxb/52.359.1179

    Article  CAS  PubMed  Google Scholar 

  29. Chirkova, T.V., Novitskaya, L.O., and Blokhina, O.B., Lipid peroxidation and antioxidant systems under anoxia in plants differing in their tolerance to oxygen deficiency, Russ. J. Plant Physiol., 1998, vol. 45, p. 55.

    CAS  Google Scholar 

  30. Sweetlove, L., Dunford, R., Ratcliffe, R.G., and Kruger, N.J., Lactate metabolism in potato tubers deficient in lactate dehydrogenase activity, Plant Cell Environ., 2000, vol. 23, p. 873.

    Article  CAS  Google Scholar 

  31. Voesenek, L.A.C.J. and Bailey-Serres, J., Flooding tolerance: O2 sensing and survival strategies, Curr. Opin. Plant Biol., 2013, vol. 16, p. 647. https://doi.org/10.1016/j.pbi.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  32. Rich, S.M., Ludwig, M., and Colmer, T.D., Photosynthesis in aquatic adventitious roots of the halophytic stem-succulent Tecticornia pergranulata (formerly Halosarcia pergranulata), Plant Cell Environ., 2008, vol. 31, p. 1007. https://doi.org/10.1111/j.1365-3040.2008.01813.x

    Article  CAS  PubMed  Google Scholar 

  33. Polko, J.K., Voesenek, L.A.C.J., Peeters, A.J.M., and Pierik, R., Petiole hyponasty: an ethylene-driven, adaptive response to changes in the environment, AoB Plants, 2011, vol. 11, p. 1. https://doi.org/10.1093/aobpla/plr031

    Article  Google Scholar 

  34. Sauter, M., Root responses to flooding, Curr. Opin. Plant Biol., 2013, vol. 16, p. 282. https://doi.org/10.1016/j.pbi.2013.03.013

    Article  PubMed  Google Scholar 

  35. Yemelyanov, V.V. and Shishova, M.F., The role of phytohormones in the control of plant adaptation to oxygen depletion, in Phytohormones and Abiotic Stress Tolerance in Plants, Khan, N.A. , Ed., Berlin-Heidelberg: Springer-Verlag, 2012, p. 229.

    Google Scholar 

  36. Sauter, M. and Steffens, B., Biogenesis of adventitious roots and their involvement in the adaptation to oxygen limitations, in Low-Oxygen Stress in Plants. Plant Cell Monographs, Van Dongen, J.T. and Licausi, F., Eds., Wien: Springer-Verlag, 2014, p. 299.

    Google Scholar 

  37. Hu, Z., Qi, X., Zhang, M., Chen, X., and Nakazono, M., Roles of phytohormones in morphological and anatomical responses of plants to flooding stress, in Plant Hormones under Challenging Environmental Factors, Ahammed, G.J. and Yu, J.Q, Eds., Dordrecht: Springer Science + Business Media, 2016, p. 117.

    Google Scholar 

  38. Winkel, A., Pedersen, O., Ella, E., Ismail, A.M., and Colmer, T.D., Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes, J. Exp. Bot., 2014, vol. 65, p. 3225. https://doi.org/10.1093/jxb/eru166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rich, S.M., Ludwig, M., and Colmer, T.D., Aquatic adventitious root development in partially and completely submerged wetland plants Cotula coronopifolia and Meionectes brownii,Ann. Bot., 2012, vol. 110, p. 405. https://doi.org/10.1093/aob/mcs051

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hattori, Y., Nagai, K., Furukawa, S., Song, X.J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., and Ashikari, M., The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water, Nature, 2009, vol. 460, p. 1026. https://doi.org/10.1038/nature08258

    Article  CAS  PubMed  Google Scholar 

  41. Tamang, B.G. and Fukao, T., Plant adaptation to multiple stresses during submergence and following desubmergence, Int. J. Mol. Sci., 2015, vol. 16, p. 30164. https://doi.org/10.3390/ijms161226226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bailey-Serres, J. and Voesenek, L.A.C.J., Life in the balance: a signaling network controlling survival of flooding, Curr. Opin. Plant Biol., 2010, vol. 13, p. 489. https://doi.org/10.1016/j.pbi.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  43. Bailey-Serres, J., Fukao, T., Gibbs, D.J., Holdsworth, M.J., Lee, S.C., Licausi, F., Perata, P., Voesenek, L.A.C.J., and van Dongen, J.T., Making sense of low oxygen sensing, Trends Plant Sci., 2012, vol. 17, p. 129. https://doi.org/10.1016/j.tplants.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  44. Tamang, B.G., Magliozzi, J.O., Maroof, M.A.S., and Fukao, T., Physiological and transcriptomic characterization of submergence and re-oxygenation responses in soybean seedlings, Plant Cell Environ., 2014, vol. 37, p. 2350. https://doi.org/10.1111/pce.12277

    Article  CAS  PubMed  Google Scholar 

  45. Schmitz, A.J., Folsom, J.J., Jikamaru, Y., Ronald, P., and Walia, H., SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway, New Phytol., 2013, vol. 198, p. 1060. https://doi.org/10.1111/nph.12202

    Article  CAS  PubMed  Google Scholar 

  46. Fukao, T., A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice, Plant Cell, 2006, vol. 18, p. 2021. https://doi.org/10.1105/tpc.106.043000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Licausi, F., Kosmacz, M., Weits, D.A., Giuntoli, B., Giorgi, F.M., Voesenek, L.A.C.J., Perata, P., and van Dongen, J.T., Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization, Nature, 2011, vol. 479, p. 419. https://doi.org/10.1038/nature10536

    Article  CAS  PubMed  Google Scholar 

  48. Steffens, B., Steffen-Heins, A., and Sauter, M., Reactive oxygen species mediate growth and death in submerged plants, Front. Plant Sci., 2013, vol. 4, p. 1. https://doi.org/10.3389/fpls.2013.00179

    Article  Google Scholar 

  49. Baxter-Burrell, A., Yang, Z., Springer, P.S., and Bailey-Serres, J., RopGAP4-dependent ROP GTPase rheostat control of Arabidopsis oxygen deprivation tolerance, Science, 2002, vol. 296, p. 2026. https://doi.org/10.1126/science.1071505

    Article  CAS  PubMed  Google Scholar 

  50. Wong, H.L., Pinontoan, R., Hayashi, K., Tabata, R., Yaeno, T., Hasegawa, K., Kojima, C., Yoshioka, H., Iba, K., Kawasaki, T., and Shimamoto, K., Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension, Plant Cell, 2007, vol. 19, p. 4022. https://doi.org/10.1105/tpc.107.055624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chang, R., Jang, C.J.H., Branco-Price, C., Nghiem, P., and Bailey-Serres, J., Transient MPK6 activation in response to oxygen deprivation and re-oxygenation is mediated by mitochondria and aids seedling survival in Arabido-psis,Plant Mol. Biol., 2012, vol. 78, p. 109. https://doi.org/10.1007/s11103-011-9850-5

    Article  CAS  PubMed  Google Scholar 

  52. Maxwell, D.P., Wang, Y., and McIntosh, L., The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, p. 8271. https://doi.org/10.1073/pnas.96.14.8271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Skutnik, M. and Rychter, A.M., Differential response of antioxidant systems in leaves and roots of barley subjected to anoxia and post-anoxia, J. Plant Physiol., 2009, vol. 166, p. 926. https://doi.org/10.1016/j.jplph.2008.11.010

    Article  CAS  PubMed  Google Scholar 

  54. Igamberdiev, A.U. and Hill, R.D., Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways, J. Exp. Bot., 2004, vol. 55, p. 2473. https://doi.org/10.1093/ixb/erh272

    Article  CAS  PubMed  Google Scholar 

  55. Youssef, M.S., Mira, M.M., Renault, S., Hill, R.D., and Stasolla, C., Phytoglobin expression influences soil flooding response of corn plants, Ann. Bot., 2016, vol. 118, p. 919. https://doi.org/10.1093/aob/mcw146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Crawford, R.M.M. and Zochowski, Z.M., Tolerance of anoxia and ethanol toxicity in chickpea seedlings (Cicer arietinum L.), J. Exp. Bot., 1984, vol. 35, p. 1472. https://doi.org/10.1093/jxb/35.10.1472

    Article  CAS  Google Scholar 

  57. Monk, L.S., Braendle, R., and Crawford, R.M.M., Catalase activity and post-anoxic injury in monocotyledonous species, J. Exp. Bot., 1987, vol. 3, p. 233.

    Article  Google Scholar 

  58. Monk, L.S., Fagerstedt, K.V., and Crawford, R.M.M., Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress, Physiol. Plant., 1989, vol. 76, p. 456. https://doi.org/10.1111/j.1399-3054.1989.tb06219.x

    Article  CAS  Google Scholar 

  59. Smirnoff, N., Antioxidant systems and plant response to the environment, in Environment and Plant Metabolism: Flexibility and Acclimation, Smirnoff, V., Ed., Oxford: Bios Sci., 1995, p. 217.

    Google Scholar 

  60. Santosa, I.E., Ram, P.C., Boamfa, E.I., Laarhoven, L.J.J., Reuss, J., Jackson, M.B., and Harren, F.J.M., Patterns of peroxidative ethane emission from submerged rice seedlings indicate that damage from reactive oxygen species takes place during submergence and is not necessarily a post-anoxic phenomenon, Planta, 2007, vol. 226, p. 193. https://doi.org/10.1007/s00425-006-0457-z

    Article  CAS  PubMed  Google Scholar 

  61. Van Toai, T.T. and Bolles, C.S., Postanoxic injury in soybean (Glycine max) seedlings, Plant Physiol., 1991, vol. 97, p. 588. https://doi.org/10.1104/pp.97.2.588

    Article  CAS  Google Scholar 

  62. Shingaki-Wells, R., Millar, A.H., Whelan, J., and Narsai, R., What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and re-oxygenation, Plant Cell Environ., 2014, vol. 37, p. 2260. https://doi.org/10.1111/pce.12312

    Article  CAS  PubMed  Google Scholar 

  63. Chirkova, T.V. and Blokhina, O.B., Influence of anoxia on the level of endogenous lipid peroxidation in plant roots, which differ in resistance to oxygen deficiency, Vestn. Leningrad Univ., Ser. 3, Biol., 1991, no. 3, p. 85.

  64. Blokhina, O.B., Fagerstedt, K.V., and Chirkova, T.V., Relationships between lipid peroxidation and anoxia tolerance in a range of species during post-anoxic re-aeration, Physiol. Plant., 1999, vol. 105, p. 625. https://doi.org/10.1034/j.1399-3054.1999.105405.x

    Article  CAS  Google Scholar 

  65. Sieber, M. and Brandle, R., Energy-metabolism in rhizomes of Acorus calamus (L.) and in tubers of Solanum tuberosum (L.) with regard to their anoxia tolerance, Bot. Acta, 1991, vol. 104, p. 279. https://doi.org/10.1111/j.1438-8677.1991.tb00230.x

    Article  CAS  Google Scholar 

  66. Garnczarska, M. and Bednarski, W., Effect of a short-term hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots, Plant Physiol. Biochem., 2004, vol. 42, p. 233. https://doi.org/10.1016/j.plaphy.2004.01.005

    Article  CAS  PubMed  Google Scholar 

  67. Ruban, A.V., Evolution under the sun: optimizing light harvesting in photosynthesis, J. Exp. Bot., 2015, vol. 66, p. 7. https://doi.org/10.1093/jxb/eru400

    Article  CAS  PubMed  Google Scholar 

  68. Pfister-Sieber, M. and Brändle, R., Aspects of plant behaviour under anoxia and post-anoxia, Proc. R. Soc. Edinb., B: Biol., 1994, vol. 102, p. 313. https://doi.org/10.1017/S0269727000014305

    Article  Google Scholar 

  69. Devanathan, S., Erban, A., Perez-Torres, R., Kopka, J., and Makaroff, C.A., Arabidopsis thaliana glyoxalase 2-1 is required during abiotic stress but is not essential under normal plant growth, PLoS One, 2014, vol. 9: e95971. https://doi.org/10.1371/journal.pone.0095971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fukao, T., Yeung, E., and Bailey-Serres, J., The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice, Plant Cell, 2011, vol. 23, p. 412. https://doi.org/10.1105/tpc.110.080325

    Article  CAS  PubMed  Google Scholar 

  71. Setter, T.L., Bhekasut, P., and Greenway, H., Desiccation of leaves after de-submergence is one cause for intolerance to complete submergence of the rice cultivar IR 42, Funct. Plant Biol., 2010, vol. 37, p. 1096. https://doi.org/10.1071/FP10025

    Article  Google Scholar 

  72. Johnson, J.R., Cobb, B.G., and Drew, M.C., Hypoxic induction of anoxia tolerance in roots of Adh1 null Zea mays L., Plant Physiol., 1994, vol. 105, p. 61. https://doi.org/10.1104/pp.105.1.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sakagami, J.I., Joho, Y., and Ito, O., Contrasting physiological responses by cultivars of Oryza sativa and O. glaberrima to prolonged submergence, Ann. Bot., 2009, vol. 103, p. 171. https://doi.org/10.1093/aob/mcn201

    Article  PubMed  Google Scholar 

  74. Sakagami, J.I., Joho, Y., and Sone, C., Complete submergence escape with shoot elongation ability by underwater photosynthesis in African rice, Oryza glaberrima Steud., Field Crop. Res., 2013, vol. 152, p. 17. https://doi.org/10.1016/j.fcr.2012.12.015

    Article  Google Scholar 

  75. Albrecht, G. and Wiedenroth, E.-M., Protection against activated oxygen following re-aeration of hypoxically pretreated wheat roots. The response of the glutathione system, J. Exp. Bot., 1994, vol. 45, p. 449. https://doi.org/10.1093/jxb/45.4.449

    Article  CAS  Google Scholar 

  76. Crawford, R.M.M. and Wollenweberratzer, B., Influence of L-ascorbic-acid on post-anoxic growth and survival of chickpea seedlings (Cicer arietinum L.), J. Exp. Bot., 1992, vol. 43, p. 703.

    Article  CAS  Google Scholar 

  77. Ushimaru, T., Shibasaka, M., and Tsuji, H., Development of the \({\text{O}}_{2}^{ - }\)-detoxification system during adaptation to air of submerged rice seedlings, Plant Cell Physiol., 1992, vol. 33, p. 1065. https://doi.org/10.1093/oxfordjournals.pcp.a078357

    Article  CAS  Google Scholar 

  78. Biemelt, S., Albrecht, G., and Wiedenroth, E.M., The effect of post-hypoxia on roots in Senecio and Myosotis species related to the glutathione system, Folia Geobot., 1996, vol. 31, p. 65.

    Article  Google Scholar 

  79. Monk, L.S., Fagerstedt, K.V., and Crawford, R.M., Superoxide dismutase as an anaerobic polypeptide: a key factor in recovery from oxygen deprivation in Iris pseudacorus? Plant Physiol., 1987, vol. 85, p. 1016. https://doi.org/10.1104/pp.85.4.1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chirkova, T.V., Sokolovskaya, E.L., and Khazova, I.V., Activity and isoenzymatic composition of plant root peroxidase depending on the conditions of temporary anaerobiosis, Sov. Plant Physiol., 1973, vol. 20, p. 1236.

    CAS  Google Scholar 

  81. Lastochkin, V.V., Emel’yanov, V.V., and Chirkova, T.V., Peroxidase activity in wheat and rice seedlings due to anoxia, Vestn. St. Petersburg Univ., Ser. 3, Biol., 2000, no. 3, p. 58.

  82. Blokhina, O., Virolainen, E., Fagerstedt, K.V., Hoikkala, A., Wähälä, K., and Chirkova, T.V., Antioxidant status of anoxia-tolerant and intolerant plant species under anoxia and re-aeration, Physiol. Plant., 2000, vol. 109, p. 396. https://doi.org/10.1034/j.1399-3054.2000.100405.x

    Article  CAS  Google Scholar 

  83. Narsai, R., Howell, K.A., Carroll, A., Ivanova, A., Millar, A.H., and Whelan, J., Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings, Plant Physiol., 2009, vol. 151, p. 306. https://doi.org/10.1104/pp.109.142026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sadiq, I., Fanucchi, F., Paparelli, E., Alpi, E., Bachi, A., Alpi, A., and Perata, P., Proteomic identification of differentially expressed proteins in the anoxic rice coleoptile, J. Plant Physiol., 2011, vol. 168, p. 2234. https://doi.org/10.1016/j.jplph.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  85. Tsuji, H., Meguro, N., Suzuki, Y., Tsutsumi, N., Hirai, A., and Nakazono, M., Induction of mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of acetaldehyde during re-aeration in rice, FEBS Lett., 2003, vol. 546, p. 369. https://doi.org/10.1016/S0014-5793(03)00631-8

    Article  CAS  PubMed  Google Scholar 

  86. Licausi, F. and Perata, P., Low oxygen signaling and tolerance in plants, Adv. Bot. Res., 2009, vol. 50, p. 139. https://doi.org/10.1016/S0065-2296(08)00804-5

    Article  CAS  Google Scholar 

  87. Shingaki-Wells, R.N., Huang, S., Taylor, N.L., and Millar, A.H., Pursuing the identification of O2 deprivation survival mechanisms in plants related to selective mRNA translation, hormone-independent cellular elongation and preparation for the arrival of oxygen, Plant Signal. Behav., 2011, vol. 6, p. 1612. https://doi.org/10.4161/psb.6.10.17107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yuan, L.B., Dai, Y.S., Xie, L.J., Yu, L.J., Zhou, Y., Lai, Y.X., Yang, Y.C., Xu, L., Chen, Q.F., and Xiao, S., Jasmonate regulates plant responses to post-submergence re-oxygenation through transcriptional activation of antioxidant synthesis, Plant Physiol., 2017, vol. 173, p. 1864. https://doi.org/10.1104/pp.16.01803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sasidharan, R. and Voesenek, L.A.C.J., Ethylene-mediated acclimations to flooding stress, Plant Physiol., 2015, vol. 169, p. 3. https://doi.org/10.1104/pp.15.00387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Voesenek, L.A.C.J. and Sasidharan, R., Ethylene and oxygen signalling drive plant survival during flooding, Plant Biol., 2013, vol. 15, p. 426. https://doi.org/10.1111/plb.12014

    Article  CAS  PubMed  Google Scholar 

  91. Singh, P. and Sinha, A.K., A positive feedback loop governed by SUB1A1 interaction with MITOGEN-ACTIVATED PROTEIN KINASE3 imparts submergence tolerance in rice, Plant Cell, 2016, vol. 28, p. 1127. https://doi.org/10.1105/tpc.15.01001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Taylor, N.L., Howell, K.A., Heazlewood, J.L., Tan, T.Y.W., Narsai, R., Huang, S., Whelan, J., and Millar, A.H., Analysis of the rice mitochondrial carrier family reveals anaerobic accumulation of a basic amino acid carrier involved in arginine metabolism during seed germination, Plant Physiol., 2010, vol. 154, p. 691. https://doi.org/10.1104/pp.110.162214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tsai, K.J., Chou, S.J., and Shih, M.C., Ethylene plays an essential role in the recovery of Arabidopsis during post-anaerobiosis re-oxygenation, Plant Cell Environ., 2014, vol. 37, p. 2391. https://doi.org/10.1111/pce.12292

    Article  CAS  PubMed  Google Scholar 

  94. Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H., Genome-wide analysis of the ERF gene family, Plant Physiol., 2006, vol. 140, p. 411. https://doi.org/10.1104/pp.105.073783.currently

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alpuerto, J., Hussain, R.M.F., and Fukao, T., The key regulator of submergence tolerance, SUB1A, promotes photosynthetic and metabolic recovery from submergence damage in rice leaves, Plant Cell Environ., 2016, vol. 39, p. 672.

    Article  CAS  PubMed  Google Scholar 

  96. Pompeiano, A., Huarancca Reyes, T., Moles, T.M., Villani, M., Volterrani, M., Guglielminetti, L., and Scartazza, A., Inter- and intraspecific variability in physiological traits and post-anoxia recovery of photosynthetic efficiency in grasses under oxygen deprivation, Physiol. Plant., 2017, vol. 161, p. 385. https://doi.org/10.1111/ppl.12608

    Article  CAS  PubMed  Google Scholar 

  97. Salavati, A., Khatoon, A., Nanjo, Y., and Komatsu, S., Analysis of proteomic changes in roots of soybean seedlings during recovery after flooding, J. Proteomics, 2012, vol. 75, p. 878. https://doi.org/10.1016/j.jprot.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  98. Branco-Price, C., Kaiser, K.A., Jang, C.J.H., Larive, C.K., and Bailey-Serres, J., Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and re-oxygenation in Arabidopsis thaliana,Plant J., 2008, vol. 56, p. 743. https://doi.org/10.1111/j.1365-313X.2008.03642.x

    Article  CAS  PubMed  Google Scholar 

  99. Millar, A.H., Trend, A.E., and Heazlewood, J.L., Changes in the mitochondrial proteome during the anoxia to air transition in rice focus around cytochrome-containing respiratory complexes, J. Biol. Chem., 2004, vol. 279, p. 39471. https://doi.org/10.1074/jbc.M406015200

    Article  CAS  PubMed  Google Scholar 

  100. Shingaki-Wells, R.N., Huang, S., Taylor, N.L., Carroll, A.J., Zhou, W., and Millar, A.H., Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance, Plant Physiol., 2011, vol. 156, p. 1706. https://doi.org/10.1104/pp.111.175570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.V. Orlova for help with the preparation of the figures.

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 12-04-01029 and 18-04-00157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Yemelyanov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

Abbreviations: CIPK15—calcineurin B-like protein-interacting protein kinase15; ERF-VII—group VII ethylene-response factor; GSS—glutathione synthetase; HRE—hypoxia responsive ERF; LOES—low oxygen escape syndrome; LOQS—low oxygen quiescence syndrome; PCO—plant cysteine oxidase; RAP—related to AP2; RBOH—respiratory burst oxidase homologs; SK1/2—SNORKEL 1/2; SLR1—slender rice 1; SnRK1A—sucrose-nonfermenting1-related protein kinase1A; Sub1A—Submergence 1A; TBA—thiobarbituric acid; VTC—vitamin C defective.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shikov, A.E., Chirkova, T.V. & Yemelyanov, V.V. Post-Anoxia in Plants: Reasons, Consequences, and Possible Mechanisms. Russ J Plant Physiol 67, 45–59 (2020). https://doi.org/10.1134/S1021443720010203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720010203

Keywords:

Navigation