Skip to main content
Log in

TERF1 Regulates Nuclear Gene Expression Through Chloroplast Retrograde Signals

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Ethylene is an important phytohormone that regulates many important biological processes in plant. ERF (ethylene response factor) proteins are key transcription factors that activate the ethylene signaling pathway. However, our knowledge about the mechanism of the ERF transcription factors in regulating nuclear genes expression is limited. Retrograde signaling pathway in chloroplast is a novel kind of mechanism that regulates nuclear gene expression by different signals in plastid. Based on our former research we analyzed the components related with retrograde signaling from plastid in the transgenic tobacco overexpressing TERF1, a member of ERF family transcription factors, to elucidate the interaction between ethylene signaling pathway and different retrograde signaling pathway in plastid under normal growth condition. Results show that TERF1 regulates different retrograde signals in plastid and thus regulates different nuclear genes expression under normal growth condition. We propose a new mechanism that links ethylene signaling pathway and retrograde signaling pathway as well as new potential of TERF1 in regulating nuclear genes expression at post-transcriptional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Neuhaus, H.E. and Emes, M.J., Nonphotosynthetic metabolism in plastids, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, vol. 51, pp. 111–140.

    Article  CAS  PubMed  Google Scholar 

  2. Chan, K.X., Phua, S.Y., Crisp, P., McQuinn, R., and Pogson, B.J., Learning the languages of the chloroplast: retrograde signaling and beyond, Annu. Rev. Plant Biol., 2016, vol. 67, pp. 25–53.

    Article  CAS  PubMed  Google Scholar 

  3. Shoji, T., Mishima, M., and Hashimoto, T., Divergent DNA-binding specificities of a group of ETHYLENE RESPONSE FACTOR transcription factors involved in plant defense, Plant Physiol., 2013, vol. 162, pp. 977–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, Z.J., Zhang, Z., Zhang, X., Zhang, H., Huang, D., and Huang, R., Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes, FEBS Lett., 2004, vol. 573, pp. 110–116.

    Article  CAS  PubMed  Google Scholar 

  5. Fernandez-Pozo, N., Menda, N., Edwards, J.D., Saha, S., Tecle, I.Y., Strickler, S.R., Bombarely, A., Fisher-York, T., Pujar, A., Foerster, H., Yan, A., and Mueller, L.A., The Sol Genomics Network (SGN)—from genotype to phenotype to breeding, Nucleic Acids Res., 2015, vol. 43: D1036–1041.

    Article  CAS  PubMed  Google Scholar 

  6. Koussevitzky, S., Nott, A., Mockler, T.C., Hong, F., Sachetto-Martins, G., Surpin, M., Lim, J., Mittler, R., and Chory, J., Signals from chloroplasts converge to regulate nuclear gene expression, Science, 2007, vol. 316, pp. 715–719.

    Article  CAS  PubMed  Google Scholar 

  7. Woodson, J.D., Perez-Ruiz, J.M., Schmitz, R.J., Ecker, J.R., and Chory, J., Sigma factor-mediated plastid retrograde signals control nuclear gene expression, Plant J., 2013, vol. 73, pp. 1–13.

    Article  CAS  PubMed  Google Scholar 

  8. Leister, D., Romani, I., Mittermayr, L., Paieri, F., Fenino, E., and Kleine, T., Identification of target genes and transcription factors implicated in translation-dependent retrograde signaling in Arabidopsis, Mol. Plant, 2014, vol. 7, pp. 1228–1247.

    Article  CAS  PubMed  Google Scholar 

  9. Waters, M.T., Wang, P., Korkaric, M., Capper, R.G., Saunders, N.J., and Langdale, J.A., GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis, Plant Cell, 2009, vol. 21, pp. 1109–1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu, Z., Xu, F., Guan, L., Qian, P., Liu, Y., Zhang, H., Huang, Y., and Hou, S., The tetratricopeptide repeat-containing protein slow green1 is required for chloroplast development in Arabidopsis, J. Exp. Bot., 2014, vol. 65, pp. 1111–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Op, D.C.R., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C., Danon, A., Wagner, D., Hideg, E., Gobel,  C., Feussner, I., Nater, M., and Apel, K., Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis, Plant Cell, 2003, vol. 15, pp. 2320–2332.

    Article  CAS  Google Scholar 

  12. Danon, A., Coll, N.S., and Apel, K., Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 17036–17041.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, K.P., Kim, C., Landgraf, F., and Apel, K., EX-ECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 10270–10275.

    Article  CAS  PubMed  Google Scholar 

  14. Shao, N., Duan, G.Y., and Bock, R., A mediator of singlet oxygen responses in Chlamydomonas reinhardtii and Arabidopsis identified by a luciferase-based genetic screen in algal cells, Plant Cell, 2013, vol. 25, pp. 4209–4226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fey, V., Gollan, P.J., Suorsa, M., Kangasjärvi, S., and Aro, E.M., Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana, J. Biol. Chem., 2005, vol. 280, pp. 5318–5328.

    Article  CAS  PubMed  Google Scholar 

  16. Tikkanen, M., Gollan, P.J., Suorsa, M., Kangasjärvi, S., and Aro, E.M., STN7 operates in retrograde signaling through controlling redox balance in the electron transfer chain, Front. Plant Sci., 2012, vol. 3: 277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hiltscher, H., Rudnik, R., Shaikhali, J., Heiber, I., Mellenthin, M., Meirelles Duarte, I., Schuster, G., Kahmann, U., and Baier, M., The radical induced cell death protein 1 (RCD1) supports transcriptional activation of genes for chloroplast antioxidant enzymes, Front. Plant Sci., 2014, vol. 5: 475.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Blanco, N.E., Guinea-Díaz, M., Whelan, J., and Strand, A., Interaction between plastid and mitochondrial retrograde signalling pathways during changes to plastid redox status, Philos. Trans. R. Soc. London, B: Biol. Sci., 2014, vol. 369: 20130231.

    Article  CAS  Google Scholar 

  19. Estavillo, G.M., Crisp, P.A., Pornsiriwong, W., Wirtz, M., Collinge, D., Carrie, C., Giraud, E., Whelan, J., David, P., Javot, H., Brearley, C., Hell, R., Marin, E., and Pogson, B.J., Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis, Plant Cell, 2011, vol. 23, pp. 3992–4012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiao, Y., Savchenko, T., Baidoo, E.E., Chehab, W.E., Hayden, D.M., Tolstikov, V., Corwin, J.A., Kliebenstein, D.J., Keasling, J.D., and Dehesh, K., Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes, Cell, 2012, vol. 149, pp. 1525–1535.

    Article  CAS  PubMed  Google Scholar 

  21. Vogel, M.O., Moore, M., König, K., Pecher, P., Alsharafa, K., Lee, J., and Dietz, K.J., Fast retrograde signaling in response to high light involves metabolite export, MITOGEN-ACTIVATED PROTEIN KINASE6, and AP2/ERF transcription factors in A-rabidopsis, Plant Cell, 2014, vol. 26, pp. 1151–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thormahlen, I., Ruber, J., von Roepenack-Lahaye, E., Ehrlich, S.M., Massot, V., Hümmer, C., Tezycka, J., Issakidis-Bourguet, E., and Geigenberger, P., Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants, Plant Cell Environ., 2013, vol. 36, pp. 16–29.

    Article  CAS  PubMed  Google Scholar 

  23. Avendano-Vazquez, A.O., Cordoba, E., Llamas, E., San, R.C., Nisar, N., de la Torre, S., Ramos-Vega, M., Gutierrez-Nava, M.D., Cazzonelli, C.I., Pogson, B.J., and Leon, P., An uncharacterized apocarotenoid-derived signal generated in zeta-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis, Plant Cell, 2014, vol. 26, pp. 2524–2537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mou, Z., He, Y., Dai, Y., Liu, X., and Li, J., Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology, Plant Cell, 2000, vol. 12, pp. 405–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mandal, M.K., Chandra-Shekara, A.C., Jeong, R.D., Yu, K., Zhu, S., Chanda, B., Navarre, D., Kachroo, A., and Kachroo, P., Oleic acid-dependent modulation of NITRIC OXIDE ASSOCIATED1 protein levels regulates nitric oxide-mediated defense signaling in Ar-abidopsis, Plant Cell, 2012, vol. 24, pp. 1654–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Froehlich, J.E., Itoh, A., and Howe, G.A., Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope, Plant Physiol., 2001, vol. 125, pp. 306–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mueller, S., Hilbert, B., Dueckershoff, K., Roitsch, T., Krischke, M., Mueller, M.J., and Berger, S., General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis, Plant Cell, 2008, vol. 20, pp. 768–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, J., Vanneste, S., Brewer, P.B., Michniewicz, M., Grones, P., Kleine-Vehn, J., Lofke, C., Teichmann, T., Bielach, A., Cannoot, B., Hoyerova, K., Chen, X., Xue, H.W., Benkova, E., Zazimalova, E., et al., Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity, Dev. Cell, 2011, vol. 20, pp. 855–866.

    Article  CAS  PubMed  Google Scholar 

  29. Rodriguez, V.M., Chételat, A., Majcherczyk, P., and Farmer, E.E., Chloroplastic phosphoadenosine phosphosulfate metabolism regulates basal levels of the prohormone jasmonic acid in Arabidopsis leaves, Plant Physiol., 2010, vol. 152, no. 3, pp. 1335–1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gil, M.J., Coego, A., Mauch-Mani, B., Jordá, L., and Vera, P., The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway, Plant J., 2005, vol. 44, pp. 155–166.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported financially by grants from the Chinese Academy of Agricultural Sciences, project no. 1610042014006.

Author information

Authors and Affiliations

Authors

Contributions

W. Wu and Y.C. Yan. designed research; W. Wu and L.L. Liu performed research and data analysis; W. Wu wrote the paper.

Corresponding author

Correspondence to Y. C. Yan.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

The article is published in the original.

Supplementary materials are available for this article at 10.1134/S1021443719010205.

Abbreviations: CH1—chlorina 1; ERF—ethylene response factor; EX—executer; FLU—fluorescent; GLK—golden 2-like; GUN—genome uncoupled; MBS—methylene blue sensitivity; SIG—sigma factor; STN7—state transition 7; TERF1—tomato ethylene responsive factor 1; PhANGs—photosynthesis-associated nuclear genes; PRANGs—plastid redox-associated nuclear genes; XRNs—exoribonucleases; WT—wild type.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Liu, L.L. & Yan, Y.C. TERF1 Regulates Nuclear Gene Expression Through Chloroplast Retrograde Signals. Russ J Plant Physiol 66, 22–28 (2019). https://doi.org/10.1134/S1021443719010205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719010205

Keywords:

Navigation