Skip to main content
Log in

Effect of Fungicide (Maneb) on Antioxydant System and Carbon Assimilation in Leaves of Sorghum Plants

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effects of Maneb on antioxidant potentials and carbon assimilation were studied in leaves sorghum (Sorghum bicolor L.) plants (C4 species). The plants were sprayed by three doses; recommended dose (2.5 g/L), twice and three times higher at 25, 40 and 55 days after planting (DAP). The leaves were harvested at 5, 10 and 15 days after treatment (DAT) and proteins content, activities of antioxidative enzymes catalase (CAT), guaiacol peroxidase (POD), glutathione reductase (GR), glutathione-S-transferases (GST) and glyoxalase I (GlyI) as well as activity of key enzyme in primary fixation of atmospheric CO2 phosphoenolpyruvate carboxylase (PEPC) and chlorophyll content were estimated. The protein content was found increased under Maneb treatment. While the POD and GR activities appear unaffected, CAT activity increased at 10 and 15 DAT. Whereas the GST activity increased significantly in plants treated with 5 g/L at 5 DAT and in plant exposed to 2.5 g/L at 10 DAT. The activity and proteins levels of GlyI were increased progressively with increasing fungicide treatment. This increase was more pronounced at 5 DAT; being 1.7 and 1.5 fold for 5 and 7.5 g/L, respectively. However, both PEPC activity and chlorophyll content seem unchanged in presence of fungicide even at high concentration. These results indicate that sorghum leaves have a well-developed systems of protection from carbonyl stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

CDNB:

1-chloro-2,4-dinitrobenzene

DAT:

days after treatment

Gly:

glyoxalase

GR:

glutathione reductase

GST:

glutathione S-transferase

MG:

methylglyoxal

PEPC:

phosphoenolpyruvate carboxylase

PMSF:

phenylmethylsulphonylfluoride

POD:

guaiacol peroxidase

PVP:

polyvinylpyrrolidone

TCA:

cycle tricarboxylic acids

References

  1. Yildiztekin, M., Kaya, G., Tuna, A.L., and Ashraf, M., Oxidative stress and antioxidative mechanisms in tomato (Solanum lycopersicum L.) plants sprayed with different pesticides, Pak. J. Bot., 2015, vol. 47, pp. 717–721.

    CAS  Google Scholar 

  2. Pena-Llopis, S., Ferrando, M.D., and Pena, J.B., Impaired glutathione redox status is associated with decreased survival in two organophosphate poisoned marine bivalves, Chemosphere, 2002, vol. 47, pp. 485–497.

    Article  CAS  PubMed  Google Scholar 

  3. Sade, B., Soylu, S., and Yetim, E., Drought and oxidative stress, Afr. J. Biotechnol., 2011, vol. 10, pp. 11102–11109.

    Article  CAS  Google Scholar 

  4. Regoli, F. and Principato, G., Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under weld and laboratory conditions: implications for the use of biochemical biomarkers, Aquat. Toxicol., 1995, vol. 31, pp. 143–164.

    Article  CAS  Google Scholar 

  5. Reed, D.J., Glutathione: toxicological implications, Annu. Rev. Pharmacol. Toxicol., 1995, vol. 30, pp. 603–631.

    Article  Google Scholar 

  6. El Omari, R., Ben Mrid, R., Chibi, F., and Nhiri, M., Involvement of phosphoenolpyruvate carboxylase and antioxydants enzymes in nitrogen nutrition tolerance in Sorghum bicolor plants, Russ. J. Plant Physiol., 2016, vol. 63, pp. 719–726.

    Article  Google Scholar 

  7. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  8. Arnon, D.I., Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris, Plant Physiol., 1949, vol. 24, pp. 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, P., Yang, X., Huang, W.W., Zhang, M., Lu, W.H., Zhao, H.T., Wang, J., Liu, H.L., Dong, A.J., and Zhang, H., Effect of pesticide 1-[6-chloro-3-methyl-pyridyl-8-nitro-7-methyl-1 2 3 5 6 7-hexahydro imidazo-(1,2a)]-pyridine when responding to a wheat plant’s antioxidant defense system, Food Chem., 2014, vol. 146, pp. 569–576.

    Article  CAS  PubMed  Google Scholar 

  11. Martins, P.F., Carvalho, G., Gratão, P.L., Dourado, M.N., Pileggi, M., Araújo, W.L., and Azevedo, R.A., Effects of the herbicides acetochlor and metolachlor on antioxidant enzymes in soil bacteria, Process Biochem., 2011, vol. 46, pp. 1186–1195.

    Article  CAS  Google Scholar 

  12. Mansour, M.M.F., Nitrogen containing compounds and adaptation of plants to salinity stress, Biol. Plant., 2000, vol. 43, vol. 43, no. 4, pp. 491–500.

    Article  CAS  Google Scholar 

  13. Lü, Z., Min, H., and Xia, Y., The response of Escherichia coli, Bacillus subtilis, and Burkholderia cepacia WZ1 to oxidative stress of exposure to quinclorac, J. Environ. Sci. Heal. B, 2004, vol. 39, pp. 431–441.

    Article  Google Scholar 

  14. Tang, H.F., Sheng, X.M., Xiong, L., Luan, Y.C., Wang, Y., and Liu, X.P., The impact of organophosphates pesticide to soluble protein and several oxidant enzymes in vegetable, J. Central China Normal Univ. (Nat. Sci.), 2006, pp. 1000–1190.

    Google Scholar 

  15. Jaleel, C.A., Gopi, R., Alagu, G., Lakshmanan, M., and Panneerselvam, R., Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don, Plant Sci., 2006, vol. 171, pp. 271–276.

    Article  CAS  Google Scholar 

  16. Shim, I.S., Momose, Y., Akihiro, H., Yamamoto, A., Kim, D.W., and Usui, K., Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants, Plant Growth Regul., 2003, vol. 39, pp. 285–292.

    Article  CAS  Google Scholar 

  17. George, S., Venkataraman, G., and Parida, A., A chloroplast-localized and auxin induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco, J. Plant Physiol., 2010, vol. 167, pp. 311–318.

    Article  CAS  PubMed  Google Scholar 

  18. Abel, E.L., Bammler, T.K., and Eaton, D.L., Biotransformation of methyl parathion by glutathione S-transferases, Toxicol. Sci., 2004, vol. 79, pp. 224–232.

    Article  CAS  PubMed  Google Scholar 

  19. Hossain, M.A., da Silva, J.A.T., and Fujita, M., Glyoxalase system and reactive oxygen species detoxification system in plant abiotic stress response and tolerance: an intimate relationship, in Abiotic Stress in Plants—Mechanisms and Adaptations, Shanker, A.K. and Venkateswarlu, B., Eds., Rijeka: InTech, 2011, pp. 235–266.

    Google Scholar 

  20. Gomes-Junior, R.A., Gratão, P.L., Gaziola, S.A., Mazzafera, P., Lea, P.J., and Azevedo, R.A., Selenium-induced oxidative stress in coffee cell suspension cultures, Funct. Plant Biol., 2007, vol. 34, pp. 449–456.

    Article  CAS  Google Scholar 

  21. Agostinetto, D., Perboni, L.T., Langaro, A.C., Gomes, J., Fraga, D.S., and Franco, J.J., Changes in photosynthesis and oxidative stress in wheat plants submitted to herbicides application, Planta Daninha, 2016, vol. 34, pp. 1–9.

    Article  Google Scholar 

  22. Susan, L.S. and Stewart, A.B., Triclopyr effects on peroxidase activity in target and non-target aquatic plants, J. Aquat. Plant Manag., 1995, vol. 33, pp. 43–48.

    Google Scholar 

  23. Janicka, U., Mioduszewska, H., Kielak, E., Klocek, J., and Horbowicz, M., The effect of haloxyfopethoxyethyl on antioxidant enzyme activities and growth of wheat leaves (Triticum vulgare L.), Pol. J. Environ. Stud., 2008, vol. 17, pp. 485–490.

    CAS  Google Scholar 

  24. Norton, S.J., Talesa, V., Yuan, W.S., and Principato, G.B., Glyoxalase I and glyoxalase II from Aloe vera: purification, characterization and comparison with animal glyoxalases, Biochem. Int., 1990, vol. 22, pp. 441–418.

    Google Scholar 

  25. Hossain, M.A., Hossain, M.Z., and Fujita, M., Stressinduced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene, Aust. J. Crop Sci., 2009, vol. 3, pp. 53–64.

    CAS  Google Scholar 

  26. Umeda, M., Hara, C., Matsubayashi, Y., Li, H., Liu, Q., Tadokoro, F., Aotsuka, S., and Uchimiya, H., Expressed sequenced tags from cultured cells of rice (Oryza sativa L.) under stressed conditions: analysis of transcripts of genes engaged in ATP-generating pathways, Plant Mol. Biol., 1994, vol. 25, pp. 469–478.

    Article  CAS  PubMed  Google Scholar 

  27. Xia, X.J., Huang, Y.Y., Wang, L., Huang, L.F., Yu, Y.L., Zhou, Y.H., and Yu, J.Q., Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L., Pestic. Biochem. Physiol., 2006, vol. 86, pp. 42–48.

    Article  CAS  Google Scholar 

  28. Sujatha, B.M., Gopi, R., Karikalan, L., Rajan, S.N., and Panneerselvam, R., Effect of triadimefon treatment on bhendi (Abelmoschus esculentus (L.) Moench.) seedlings under salinity condition, Ind. J. Plant Physiol., 1999, vol. 4, pp. 307–310.

    CAS  Google Scholar 

  29. Petit, A.N., Fontaine, F., Clément, C., and Vaillant-Gaveau, N., Gating in grapevine: relationship between application of the fungicide fludioxonil and circadian rhythm on photosynthesis, Environ. Pollut., 2009, vol. 157, pp. 130–134.

    Article  CAS  PubMed  Google Scholar 

  30. Petit, A.N., Fontaine, F., Vatsa, P., Clément, C., and Vaillant-Gaveau, N., Fungicide impacts on photosynthesis in crop plants, Photosynth. Res., 2012, vol. 111, pp. 315–326.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. El Omari.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Omari, R., Ben Mrid, R., Amakran, A. et al. Effect of Fungicide (Maneb) on Antioxydant System and Carbon Assimilation in Leaves of Sorghum Plants. Russ J Plant Physiol 65, 237–243 (2018). https://doi.org/10.1134/S1021443718020103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718020103

Keywords

Navigation