Skip to main content
Log in

Ar+ beam implantation causes enhancement of salt stress tolerance in highland barley

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

This study examines the effects of ionizing radiation (control, 4 × 1016, 6 × 1016, 9.5 × 1016, and 15 × 1016 Ar+/cm2) on some physio-biochemical and molecular responses of highland barley (Hordeum vulgare L. ssp. vulgare) under salt stress for 0, 24, 48, and 96 h. The growth parameters of highland barley were the highest at the dose of 9.5 × 1016 Ar+/cm2, but the lowest at 15 × 1016 Ar+/cm2 dose. The malondialdehyde (MDA) content increased with increasing irradiation dose and peaked at 15 × 1016 Ar+/cm2 during stress treatments. The activities of antioxidant enzymes and proline accumulation showed different changes than MDA following ion beam irradiation toward stress conditions, at the dose of 15 × 1016 Ar+/cm2, antioxidant enzyme activities and proline content were the lowest compared with their corresponding controls, while at the dose of 9.5 × 1016 Ar+/cm2 antioxidant enzyme activities and proline content were the highest. Moreover, the expression of salt-related gene followed the same pattern as that of the antioxidant enzymes. Our results suggest that the dose of 9.5 × 1016 Ar+/cm2 alleviates salt stress by modulating the physio-biochemical responses and eliciting the stress signal transduction in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

MDA:

malondialdehyde

POD:

peroxidase

SOD:

superoxide dismutase

References

  1. Bose, J., Xie, Y., and Shen, W., Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+- ATPase and by altering SOS1 transcript levels in roots, J. Exp. Bot., 2013, vol. 64, pp. 471–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Qiu, J., The third pole, Nature, 2008, vol. 454, pp. 393–396.

    Article  CAS  PubMed  Google Scholar 

  3. Gama, P.B.S., Inanaga, S., Tanaka, K., and Nakazawa, R., Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress, Afr. J. Biotechnol., 2007, vol. 6, pp. 79–88.

    CAS  Google Scholar 

  4. Wang, J., Li, H.R., Li, Y.H., Yu, J.P., Yang, L.S., Feng, F.J., and Chen, Z., Speciation, distribution, and bioavailability of soil selenium in the Tibetan Plateau Kashin-Beck disease area-a case study in Songpan County, Sichuan Province, China, Biol. Trace Elem. Res., 2013, vol. 156, pp. 367–375.

    Article  CAS  Google Scholar 

  5. Li, W.H., Xiao, X.L., Zhang, W.H., Zheng, J.M., and Luo, Q.G., Compositional, morphological, structural and physicochemical properties of starches from seven naked barley cultivars grown in China, Food Res. Int., 2014, vol. 58, pp. 7–14.

    Article  CAS  Google Scholar 

  6. Schulte, D., Timothy, J.C., Graner, A., Langridge, P., Matsumoto, T., Muehlbauer, G., Sato, K., Schulman, A.H., Waugh, R., Wise, R.P., and Stein, N., The International Barley Sequencing Consortium—at the threshold of efficient access to the barley genome, Plant Physiol., 2009, vol. 149, pp. 142–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barkla, B.J., Castellanos-Cervantes, T., Diaz de León, J.L., Matros, A., Mock, H.P., Perez-Alfocea, F., Salekdeh, G.H., Withzel, K., and Zorb, C., Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics—current achievements and perspectives, Proteomics, 2013, vol. 13, pp. 1885–1900.

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Q., Chen, Z.Z., Zhou, X.F., Yin, H.B., Li, X., Xin, X.F., Hong, X.H., Zhu, J.K., and Gong, Z.Z., Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis, Mol. Plant, 2009, vol. 2, pp. 22–31.

    Article  CAS  PubMed  Google Scholar 

  9. Shi, H., Quintero, F.J., Pardo, J.M., and Zhu, J.K., The putative plasma membrane Na +/H + antiporter SOS1 controls long distance Na+ transport in plants, Plant Cell, 2002, vol. 14, pp. 465–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, J., Ishitani, M., Halfter, U., Kim, C.S., and Zhu, J.K., The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 3730–3734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, J. and Zhu, J.K., A calcium sensor homolog required for plant salt tolerance, Science, 1998, vol. 280, pp. 1943–1945.

    Article  CAS  PubMed  Google Scholar 

  12. Arase, S., Hase, Y., Abe, J., Kasai, M., Yamada, T., Kitamura, K., Narumi, I., Tanaka, A., and Kanazawa, A., Optimization of ion-beam irradiation for mutagenesis in soybean: effects on plant growth and production of visibly altered mutants, Plant Biotechnol., 2011, vol. 28, pp. 323–329.

    Article  CAS  Google Scholar 

  13. Jain, S.M., Mutagenesis in crop improvement under the climate change, Rom. Biotech. Lett., 2010, vol. 2, suppl., pp. 88–106.

    Google Scholar 

  14. Giannopolitis, C.N. and Ries, S.K., Superoxide dismutases. I. Occurrence in higher plants, Plant Physiol., 1977, vol. 59, pp. 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bergmeyer, N., Methode Enzymaticchen Analyse, Berlin: Akademie-Verlag, 1970.

    Google Scholar 

  16. Zhang, J. and Kirkham, M.B., Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species, Plant Cell Physiol., 1994, vol. 35, pp. 785–791.

    Article  CAS  Google Scholar 

  17. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  18. Qi, W.C., Zhang, L., Xu, H.B., Wang, L., and Jiao, Z., Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings, Biochem. Biophys. Res. Commun., 2014, vol. 450, pp. 1010–1015.

    Article  CAS  PubMed  Google Scholar 

  19. Shalata, A. and Neumann, P.M., Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation, J. Exp. Bot., 2001, vol. 52, pp. 2207–2211.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, N. and Yu, L., Effect of N+ ion implantation on antioxidase activity in Blakeslea trispora, Radiat. Phys. Chem., 2008, vol. 77, pp. 1046–1049.

    Article  Google Scholar 

  21. Liu, Z.Q., Gu, W.B., and Li, W.J., Effect of heavy-ion beams irradiation on survival rate and antioxidant enzymes of sweet sorghum seedlings, Agric. Sci. Technol., 2012, vol. 11, pp. 2257–2268.

    Google Scholar 

  22. Olivieri, G., Bodycote, J., and Wolff, S., Adaptive response of human lymphocytes to low concentrations of radioactive thymidine, Science, 1984, vol. 4636, pp. 594–597.

    Article  Google Scholar 

  23. Yang, G., Mei, T., Yuan, H., Zhang, W., Chen, L., Xue, J., Wu, L., and Wang, Y., Bystander/abscopal effects induced in intact Arabidopsis seeds by lowenergy heavy-ion radiation, J. Radiat. Res., 2008, vol. 170, pp. 372–380.

    Article  CAS  Google Scholar 

  24. Chen, H., Li, F., Yuan, H., Xiao, X., Yang, G., and Wu, L., Abscopal signals mediated bio-effects in lowenergy ion irradiated Medicago truncatula seeds, J. Radiat. Res., 2010, vol. 51, pp. 651–656.

    Article  PubMed  Google Scholar 

  25. Zhu, J.K., Regulation of ion homeostasis under salt stress, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 441–445.

    Article  CAS  PubMed  Google Scholar 

  26. Semsang, N. and Deng, L., Induction of antioxidant enzyme activity and lipid peroxidation level in ionbeam- bombarded rice seeds, Nucl. Instrum. Methods Phys. Res., Sect. B, 2013, vol. 307, pp. 603–609.

    Article  CAS  Google Scholar 

  27. Ashraf, M. and Foolad, M.R., Roles of glycine betaine and proline in improving plant abiotic stress resistance, Ecotox. Environ. Safe., 2007, vol. 59, pp. 206–216.

    CAS  Google Scholar 

  28. Nagata, T., Yamada, H., and Du, Z., Microarray analysis of genes that respond to gamma-irradiation in Arabidopsis, J. Agric. Food Chem., 2005, vol. 53, pp. 1022–1030.

    Article  CAS  PubMed  Google Scholar 

  29. Kim, D.S., Kim, J.B., and Goh, E.J., Antioxidant response of Arabidopsis plants to gamma irradiation: genome-wide expression profiling of the ROS scavenging and signal transduction pathways, J. Plant Physiol., 2011, vol. 168, pp. 1960–1971.

    Article  CAS  PubMed  Google Scholar 

  30. Shereen, A., Ansari, R., and Mumtaz, S., Impact of gamma irradiation induced changes on growth and physiological responses of rice under saline conditions, Pak. J. Bot., 2009, vol. 41, pp. 2487–2495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Jiao.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.J., Jiao, Z., Liang, J.Q. et al. Ar+ beam implantation causes enhancement of salt stress tolerance in highland barley. Russ J Plant Physiol 64, 749–757 (2017). https://doi.org/10.1134/S1021443717050144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717050144

Keywords

Navigation