Skip to main content
Log in

Redox reactions in apoplast of growing cells

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Redox reactions affecting the cell wall extensibility proceed in the apoplast of growing cells. The reactions involve dozens of oxidoreductases localized in cell walls (Class I and III heme peroxidases, FAD- and Cu-dependent amine oxidases, oxalate oxidase, ascorbate oxidase, superoxide dismutase, etc.) together with NADPH oxidase and quinone reductase of the plasma membrane. The cell wall extensibility decreases due to peroxidase-catalyzed phenolic cross-links of polymers. Cell growth is proven to be directly dependent on production of reactive oxygen species (ROS) in the apoplast. A special value is attached to hydroxyl radical OH•, which is able to locally cleave polysaccharides and, thus, increase wall extensibility. Generation of OH• results from one-electron reduction of H2O2 and, consequently, is related to the complex of enzymatic and spontaneous reactions of H2O2 turnover in the apoplast. The extensibility also depends on an ascorbate concentration in the apoplast and on a ratio of its oxidized to reduced forms. This dependence is expressed not only in the well-known down-regulation of phenols oxidation but also through pro-oxidant and signal activities. There is only indirect evidence of a role of apoplast-originated redox signaling in the cell growth regulation. In addition to ascorbate, the signaling may supposedly involve ROS, glutathione recycling reactions, numerous redox-sensitive peptides, and proteins localized in the cell wall and the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

ascorbic acid

AO:

ascorbate oxidase

APX:

ascorbate peroxidase

CRK:

cysteine-rich receptor-like protein kinases

DHA:

didehydroascorbic acid

DAO:

diamine oxidase

GABA:

γ-aminobutyric acid

GGT:

γ-glutamyl transferase/transpeptidase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

MDA:

monodehydroascorbic acid

OO:

oxalate oxidase

PAO:

polyamine oxidase

PRX:

guaiacol peroxidase

SOD:

superoxide dismutase

References

  1. Dong, W., Kieliszewski, M., and Held, M.A., Identification of the pI 4.6 extensin peroxidase from Lycopersicon esculentum using proteomics and reversegenomics, Phytochemistry, 2015, vol. 112, pp. 151–159.

    Article  CAS  PubMed  Google Scholar 

  2. Lamport, D.T.A., Kieliszewski, M.J., Chen, Y., and Cannon, M.C., Role of the extensin superfamily in primary cell wall architecture, Plant Physiol., 2011, vol. 156, pp. 11–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Parvez, M.M., Wakabayashi, K., Hoson, T., and Kamisaka, S., White light promotes the formation of diferulic acid in maize coleoptile cell walls by enhancing PAL activity, Physiol. Plant., 1997, vol. 99, pp. 39–48.

    Article  CAS  Google Scholar 

  4. Schopfer, P., Lapierre, C., and Nolte, T., Light-controlled growth of the maize seedling mesocotyl: mechanical cell-wall changes in the elongation zone and related changes in lignification, Physiol. Plant., 2001, vol. 111, pp. 83–92.

    Article  CAS  Google Scholar 

  5. Hoson, T. and Wakabayashi, K., Role of the plant cell wall in gravity resistance, Phytochemistry, 2015, vol. 112, pp. 84–90.

    Article  CAS  PubMed  Google Scholar 

  6. Uddin, M.N., Hanstein, S., Faust, F., Eitenmüller, P.T., Pitann, B., and Schubert, S., Diferulic acids in the cell wall may contribute to the suppression of shoot growth in the first phase of salt stress in maize, Phytochemistry, 2014, vol. 102, pp. 126–136.

    Article  CAS  PubMed  Google Scholar 

  7. Sax, K., The stimulation of plant growth by ionizing radiation, Radiat. Bot., 1963, vol. 3, pp. 179–186.

    Article  Google Scholar 

  8. Schopfer, P., Hydroxyl radical-induced cell wall loosening in vitro and in vivo: implications for the control of elongation growth, Plant J., 2001, vol. 28, pp. 679–688.

    Article  CAS  PubMed  Google Scholar 

  9. Liszkay, A., van der Zalm, E., and Schopfer, P., Production of reactive oxygen intermediates (O2 •–, H2O2, and OH) by maize roots and their role in wall loosening and elongation growth, Plant Physiol., 2004, vol. 136, pp. 3114–3123.

    CAS  Google Scholar 

  10. Tabbì, G., Fry, S.C. and Bonomo, R.P., ESR study of the non-enzymic scission of xyloglucan by an ascorbate–H2O2–copper system: the involvement of the hydroxyl radical and the degradation of ascorbate, J. Inorg. Biochem., 2001, vol. 84, pp. 179–187.

    Article  PubMed  Google Scholar 

  11. Fry, S.C., Dumville, J.C., and Miller, J.G., Fingerprinting of polysaccharides attacked by hydroxyl radicals in vitro and in the cell walls of ripening pear fruit, Biochem. J., 2001, vol. 357, pp. 729–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Müller, K., Linkies, A., Vreeburg, R.A.M., Fry, S.C., Krieger-Liszkay, A., and Leubner-Metzger, G., In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth, Plant Physiol., 2009, vol. 150, pp. 1855–1865.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cohen, M.F., Gurung, S., Fukuto, J.M., and Yamasaki, H., Controlled free radical attack in the apoplast: a hypothesis for roles of O,N and S species in regulatory and polysaccharide cleavage events during rapid abscission by Azolla, Plant Sci., 2014, vol. 217-218, pp. 120–126.

    Article  CAS  PubMed  Google Scholar 

  14. Schopfer, P., Liszkay, A., Bechtold, M., Frahry, G., and Wagner, A., Evidence that hydroxyl radicals mediate auxin-induced extension growth, Planta, 2002, vol. 214, pp. 821–828.

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez, A.A., Grunberg, K.A., and Taleisnik, E.L., Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension, Plant Physiol., 2002, vol. 129, pp. 1627–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rodriguez, A.A., Maiale, S.J., Menéndez, A.B., and Ruiz, O.A., Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress, J. Exp. Bot., 2009, vol. 60, pp. 4249–4262.

    Article  CAS  PubMed  Google Scholar 

  17. Sharova, E.I., Bilova, T.E., and Medvedev, S.S., Axial changes in apoplast properties in the elongation zone of maize mesocotyl, Russ. J. Plant Physiol., 2012, vol. 59, pp. 565–572.

    Article  CAS  Google Scholar 

  18. Voothuluru, P. and Sharp, R.E., Apoplastic hydrogen peroxide in the growth zone of the maize primary root under water stress. I. Increased levels are specific to the apical region of growth maintenance, J. Exp. Bot., 2013, vol. 64, pp. 1223–1233.

    Article  CAS  PubMed  Google Scholar 

  19. Joo, J.H., Yoo, H.J., Hwang, I., Lee, J.S., Nam, K.H., and Bae, Y.S., Auxin-induced reactive oxygen species production requires the activation of phosphatidylinositol 3-kinase, FEBS Lett., 2005, vol. 579, pp. 1243–1248.

    Article  CAS  PubMed  Google Scholar 

  20. Kranner, I., Roach, T., Beckett, R.P., Whitaker, C., and Minibayeva, F.V., Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum, J. Plant Physiol., 2010, vol. 167, pp. 805–811.

    Article  CAS  PubMed  Google Scholar 

  21. Causin, H.F., Roqueiro, G., Petrillo, E., Láinez, V., Pena, L.B., Marchetti, C.F., Gallego, S.M., and Maldonado, S.I., The control of root growth by reactive oxygen species in Salix nigra Marsh. seedlings, Plant Sci., 2012, vol. 183, pp. 197–205.

    Article  CAS  PubMed  Google Scholar 

  22. Foreman, J., Demidchik, V., Bothwell, J.H.F., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D.G., Davies, J.M., and Dolan, L., Reactive oxygen species produced by NADPH oxidase regulate plant cell growth, Nature, 2003, vol. 422, pp. 442–446.

    Article  CAS  PubMed  Google Scholar 

  23. Monshausen, G.B., Bibikova, T.N., Messerli, M.A., Shi, C., and Gilroy, S., Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 20996–21001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mei, W., Qin, Y., Song, W., Li, J., and Zhu, Y., Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation, J. Genet. Genomics, 2009, vol. 36, pp. 141–150.

    Article  CAS  PubMed  Google Scholar 

  25. Krause, C., Richter, S., Knöll, C., and Jürgens, G., Plant secretome–from cellular process to biological activity, Biochim. Biophys. Acta, 2013, vol. 1834, pp. 2429–2441.

    Article  CAS  PubMed  Google Scholar 

  26. Drakakaki, G. and Dandekar, A., Protein secretion: how many secretory routes does a plant cell have? Plant Sci., 2013, vol. 203–204, pp. 74–78.

    Article  PubMed  Google Scholar 

  27. Albenne, C., Canut, H., and Jamet, E., Plant cell wall proteomics: the leadership of Arabidopsis thaliana, Front. Plant Sci., 2013, vol. 4, p. 111. doi 10.3389/ fpls.2013.00111

    Article  PubMed  PubMed Central  Google Scholar 

  28. Francoz, E., Ranocha, P., Nguyen-Kim, H., Jamet, E., Burlat, V., and Dunand, C., Roles of cell wall peroxidases in plant development, Phytochemistry, 2015, vol. 112, pp. 15–21.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, J., Alvarez, S., Marsh, E.L., LeNoble, M.E., Cho, I.J., Sivaguru, M., Chen, S., Nguyen, H.T., Wu, Y., Schachtman, D.P., and Sharp, R.E., Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit, Plant Physiol., 2007, vol. 145, pp. 1533–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pechanova, O., Hsu, C.Y., Adams, J.P., Pechan, T., Vandervelde, L., Drnevich, J., Jawdy, S., Adeli, A., Suttle, J.C., Lawrence, A.M., Tschaplinski, T.J., Séguin, A., and Yuceer, C., Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar, BMC Genomics, 2010, vol. 11, p. 674, doi 10.1186/1471-2164-11-674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Angelini, R., Cona, A., Federico, R., Fincato, P., Tavladoraki, P., and Tisi, A., Plant amine oxidases “on the move”: an update, Plant Physiol. Biochem., 2010, vol. 48, pp. 560–564.

    Article  CAS  PubMed  Google Scholar 

  32. Trentin, A.R., Pivato, M., Mehdi, S.M.M., Barnabas, L.E., Giaretta, S., Fabrega-Prats, M., Prasad, D., Arrigoni, G., and Masi, A., Proteome readjustments in the apoplastic space of Arabidopsis thaliana ggt1 mutant leaves exposed to UV-B radiation, Front. Plant Sci., 2015, vol. 6, p. 128. doi 10.3389/ fpls.2015.00128

    Article  PubMed  PubMed Central  Google Scholar 

  33. Šukalovic, V., Vuletic, M., Markovic, K., and Vucinic, Ž., Cell wall-associated malate dehydrogenase activity from maize roots, Plant Sci., 2011, vol. 181, pp. 465–470.

    Article  Google Scholar 

  34. Lohaus, G., Interaction between phloem transport and apoplastic solute concentrations, The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions, Sattelmacher, B. and Horst, W.J., Eds., Dordrecht: Springer, 2007, pp. 323–336.

  35. Fan, B., Carvalhais, L.C., Becker, A., Fedoseyenko, D., von Wiren, N., and Borriss, R., Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates, BMC Microbiol., 2012, vol. 12: 116, doi 10.1186/1471-2180-12-116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O’Brien, J.A., Daudi, A., Butt, V.S., and Bolwell, G.P., Reactive oxygen species and their role in plant defence and cell wall metabolism, Planta, 2012, vol. 236, pp. 765–779.

    Article  PubMed  Google Scholar 

  37. Masi, A., Trentin, A.R., Agrawal, G.K., and Rakwal, R., Gamma-glutamyl cycle in plants: a bridge connecting the environment to the plant cell? Front. Plant Sci., 2015, vol. 6, p. 252. doi 10.3389/ fpls.2015.00252

  38. Bela, K., Horváth, E., Gallé, Á., Szabados, L., Tari, I., and Csiszár, J., Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses, J. Plant Physiol., 2015, vol. 176, pp. 192–201.

    Article  CAS  PubMed  Google Scholar 

  39. Lillig, C.H., Berndt, C., and Holmgren, A., Glutaredoxin systems, Biochim. Biophys. Acta, 2008, vol. 1780, pp. 1304–1317.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, C.J. and Guo, Y., OsTRXh1 regulates the redox state of the apoplast and influences stress responses in rice, Plant Signal. Behav., 2012, vol. 7, pp. 1–3.

    Article  CAS  Google Scholar 

  41. Bhatt, I. and Tripathi, B.N., Plant peroxiredoxins: catalytic mechanisms, functional significance and future perspectives, Biotechnol. Adv., 2011, vol. 29, pp. 850–859.

    CAS  PubMed  Google Scholar 

  42. Idänheimo, N., Gauthier, A., Salojärvi, J., Siligato, R., Brosché, M., Kollist, H., Mähönen, A.P., Kangasjärvi, J., and Wrzaczek, M., The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress, Biochem. Biophys. Res. Commun., 2014, vol. 445, pp. 457–462.

    Article  PubMed  Google Scholar 

  43. Hopff, D., Wienkoop, S., and Lüthje, S., The plasma membrane proteome of maize roots grown under low and high iron conditions, J. Proteomics, 2013, vol. 91, pp. 605–618.

    Article  CAS  PubMed  Google Scholar 

  44. Kaur, G., Sharma, A., Guruprasad, K., and Pati, P.K., Versatile roles of plant NADPH oxidases and emerging concepts, Biotech. Adv., 2014, vol. 32, pp. 551–563.

    Article  CAS  Google Scholar 

  45. Cosio, C. and Dunand, C., Specific functions of individual class III peroxidase genes, J. Exp. Bot., 2009, vol. 60, pp. 391–408.

    Article  CAS  PubMed  Google Scholar 

  46. Barceló, A., Gómez Ros, L.V., and Carrasco, A.E., Looking for syringyl peroxidases, Trends Plant Sci., 2007, vol. 12, pp. 486–491.

    Article  PubMed  Google Scholar 

  47. Shigeto, J., Nagano, M., Fujita, K., and Tsutsumi, Y., Catalytic profile of Arabidopsis peroxidases, AtPrx-2, 25 and 71, contributing to stem lignification, PLoS One, 2014, vol. 9, p. e105332. doi 10.1371/journal. pone.0105332

    PubMed  Google Scholar 

  48. Alfonso-Prieto, M., Vidossich, P., and Rovira, C., The reaction mechanisms of heme catalases: an atomistic view by ab initio molecular dynamics, Arch. Biochem. Biophys., 2012, vol. 525, pp. 121–130.

    Article  CAS  PubMed  Google Scholar 

  49. KärKönen, A. and Kuchitsu, K., Reactive oxygen species in cell wall metabolism and development in plants, Phytochemistry, 2015, vol. 112, pp. 22–32.

    Article  PubMed  Google Scholar 

  50. Kukavica, B., Mojovic, M., Vucinic, Ž., Maksimovic, V., Takahama, U., and Veljovic Jovanovic, S., Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn- SOD and phenolics in their production, Plant Cell Physiol., 2009, vol. 50, pp. 304–317.

    CAS  PubMed  Google Scholar 

  51. Baker, C.J., Mock, N.M., Whitaker, B.D., Hammond, R.W., Nemchinov, L., Roberts, D.P., and Aver’yanov, A.A., Characterization of apoplast phenolics: in vitro oxidation of acetosyringone results in a rapid and prolonged increase in the redox potential, Physiol. Mol. Plant Pathol., 2014, vol. 86, pp. 57–63.

    Article  CAS  Google Scholar 

  52. Heyno, E., Mary, V., Schopfer, P., and Krieger-Liszkay, A., Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes, Planta, 2011, vol. 234, pp. 35–45.

    Article  CAS  PubMed  Google Scholar 

  53. Daudi, A., Cheng, Z., O’Brien, J.A., Mammarella, N., Khan, S., Ausubel, F.M., and Bolwell, G.P., The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity, Plant Cell, 2012, vol. 24, pp. 275–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, Y., Rubio, M.C., Alassimone, J., and Geldner, N., A mechanism for localized lignin deposition in the endodermis, Cell, 2013, vol. 153, pp. 402–412.

    Article  CAS  PubMed  Google Scholar 

  55. Schopfer, P., Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles, Planta, 1996, vol. 199, pp. 43–49.

    Article  CAS  Google Scholar 

  56. Passardi, F., Tognolli, M., de Meyer, M., Penel, C., and Dunand, C., Two cell wall associated peroxidases from Arabidopsis influence root elongation, Planta, 2006, vol. 223, pp. 965–974.

    Article  CAS  PubMed  Google Scholar 

  57. Ueda, Y., Wu, L., and Frei, M., A critical comparison of two high-throughput ascorbate analyses methods for plant samples, Plant Physiol. Biochem., 2013, vol. 70, pp. 418–423.

    Article  CAS  PubMed  Google Scholar 

  58. Pignocchi, C. and Foyer, C.H., Apoplastic ascorbate metabolism and its role in the regulation of cell signalling, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 379–389.

    Article  CAS  PubMed  Google Scholar 

  59. Castagna, A. and Ranieri, A., Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment, Environ. Pollut., 2009, vol. 157, pp. 1461–1469.

    Article  CAS  PubMed  Google Scholar 

  60. van Doorn, W.G. and Ketsa, S., Cross reactivity between ascorbate peroxidase and phenol (guaiacol) peroxidase, Postharvest Biol. Tec., 2014, vol. 95, pp. 64–69.

    Article  Google Scholar 

  61. Hadži-Taškovic Šukalovic, V., Vuletic, M., and Vucinic, Ž., Plasma membrane-bound phenolic peroxidase of maize roots: in vitro regulation of activity with NADH and ascorbate, Plant Sci., 2003, vol. 165, pp. 1429–1435.

    Article  Google Scholar 

  62. Takahama, U., Regulation of peroxidase-dependent oxidation of phenolics by ascorbic acid: different effects of ascorbic acid on the oxidation of coniferyl alcohol by the apoplastic soluble and cell wall-bound peroxidases from epicotyls of Vigna angularis, Plant Cell Physiol., 1993, vol. 34, pp. 809–817.

    CAS  Google Scholar 

  63. Sánchez, M., Queijeiro, E., Revilla, G., and Zarra, I., Changes in ascorbic acid levels in apoplastic fluid during growth of pine hypocotyls. Effect on peroxidase activities associated with cell walls, Physiol. Plant., 1997, vol. 101, pp. 815–820.

    Article  Google Scholar 

  64. Padu, E., Apoplastic peroxidases, ascorbate and lignification in relation to nitrate supply in wheat stem, J. Plant Physiol., 1999, vol. 154, pp. 576–583.

    CAS  Google Scholar 

  65. Kato, N. and Esaka, M., Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells, Physiol. Plant., 1999, vol. 105, pp. 321–329.

    Article  CAS  Google Scholar 

  66. Lee, Y., Park, C.H., Kim, A.R., Chang, S.C., Kim, S.H., Lee, W.S., and Kim, S.K., The effect of ascorbic acid and dehydroascorbic acid on the root gravitropic response in Arabidopsis thaliana, Plant Physiol. Biochem., 2011, vol. 49, pp. 909–916.

    Article  CAS  PubMed  Google Scholar 

  67. Kisu, Y., Harada, Y., Goto, M., and Esaka, M., Cloning of the pumpkin ascorbate oxidase gene and analysis of a cis-acting region involved in induction by auxin, Plant Cell Physiol., 1997, vol. 38, pp. 631–637.

    Article  CAS  PubMed  Google Scholar 

  68. de Tullio, M., Guether, M., and Balestrini, R., Ascorbate oxidase is the potential conductor of a symphony of signaling pathways, Plant Signal. Behav., 2013, vol. 8, p. e23213. doi 10.4161/psb.23213

    Article  PubMed  PubMed Central  Google Scholar 

  69. González-Reyes, J.A., Döring, O., Navas, P., Obst, G., and Böttger, M., The effect of ascorbate free radical on the energy state of the plasma membrane of onion (Allium cepa L.) root cells: alteration of K+ efflux by ascorbate? Biochim. Biophys. Acta, 1992, vol. 1098, pp. 177–183.

    Article  Google Scholar 

  70. González-Reyes, J.A., Alcaín, F.J., Caler, J.A., Serrano, A., Córdoba, F., and Navas, P., Stimulation of onion root elongation by ascorbate and ascorbate free radical in Allium cepa L., Protoplasma, 1995, vol. 184, pp. 31–35.

    Article  Google Scholar 

  71. Parsons, H.T. and Fry, S.C., Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions, Phytochemistry, 2012, vol. 75, pp. 41–49.

    Article  CAS  PubMed  Google Scholar 

  72. Qian, H.F., Peng, X.F., Han, X., Ren, J., Zhan, K.Y., and Zhu, M., The stress factor, exogenous ascorbic acid, affects plant growth and the antioxidant system in Arabidopsis thaliana, Russ. J. Plant Physiol., 2014, vol. 61, pp. 467–475.

    CAS  Google Scholar 

  73. Córdoba-Pedregosa, M.C., González-Reyes, J.A., Cañadillas, M.S., Navas, P., and Córdoba, F., Role of apoplastic and cell-wall peroxidases on the stimulation of root elongation by ascorbate, Plant Physiol., 1996, vol. 112, pp. 1119–1125.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dunwell, J.M., Gibbings, J.G., Mahmood, T., and Naqvi, M.S., Germin and germin-like proteins: evolution, structure, and function, Crit. Rev. Plant Sci., 2008, vol. 27, pp. 342–375.

    Article  CAS  Google Scholar 

  75. Wakabayashi, K., Soga, K., and Hoson, T., Cell wall oxalate oxidase modifies the ferulate metabolism in cell walls of wheat shoots, J. Plant Physiol., 2011, vol. 168, pp. 1997–2000.

    Article  CAS  PubMed  Google Scholar 

  76. Löw, H., Crane, F.L., and Morré, D.J., Putting together a plasma membrane NADH oxidase: a tale of three laboratories, Int. J. Biochem. Cell Biol., 2012, vol. 44, pp. 1834–1838.

    Article  PubMed  Google Scholar 

  77. Lassig, R., Gutermuth, T., Bey, T.D., Konrad, K.R., and Romeis, T., Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth, Plant J., 2014, vol. 78, pp. 94–106.

    Article  CAS  PubMed  Google Scholar 

  78. Barceló, A. and GómezRos, L.V., Reactive oxygen species in plant cell walls, Reactive Oxygen Species in Plant Signaling, Rio, L.A. and Puppo, A., Eds., Heidelberg: Springer-Verlag, 2009, pp. 73–93.

    Chapter  Google Scholar 

  79. Goldberg, R. and Perdrizet, E., Ratio of free to bound polyamines during maturation in mung-bean hypocotyl cells, Planta, 1984, vol. 161, pp. 531–535.

    Article  CAS  PubMed  Google Scholar 

  80. Messiaen, J. and van Cutsem, P., Polyamines and pectins. II. Modulation of pectic-signal transduction, Planta, 1999, vol. 208, pp. 247–256.

    Article  CAS  PubMed  Google Scholar 

  81. Hura, T., Dziurka, M., Hura, K., Ostrowska, A., and Dziurka, K., Free and cell wall-bound polyamines under long-term water stress applied at different growth stages of × Triticosecale Wittm., PLoS One, 2015, vol. 10, p. e0135002. doi 10.1371/journal.pone.0135002

    Article  PubMed  PubMed Central  Google Scholar 

  82. Solomon, P.S. and Oliver, R.P., The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum, Planta, 2001, vol. 213, pp. 241–249.

    Article  CAS  PubMed  Google Scholar 

  83. Kathiresan, A., Miranda, J., Chinnappa, C.C., and Reid, D.M., aminobutyric acid promotes stem elongation in Stellaria longipes: the role of ethylene, Plant Growth Regul., 1998, vol. 26, pp. 131–137.

  84. Ramesh, S.A., Tyerman, S.D., Xu, B., Bose, J., Kaur, S., Conn, V., Domingos, P., Ullah, S., Wege, S., Shabala, S., Feijó, J.A., Ryan, P.R., and Gilliham, M., GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters, Nat. Commun., 2015, vol. 6, p. 7879. doi 10.1038/ncomms8879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Song, X.G., She, X.P., Yue, M., Liu, Y.E., Wang, Y.X., Zhu, X., and Huang, A.X., Involvement of copper amine oxidase (CuAO)-dependent hydrogen peroxide synthesis in ethylene-induced stomatal closure in Vicia faba, Russ. J. Plant Physiol., 2014, vol. 61, pp. 390–396.

    Article  CAS  Google Scholar 

  86. Wisniewski, J.-P., Rathbun, E.A., Knox, J.P., and Brewin, N.J., Involvement of diamine oxidase and peroxidase in insolubilization of the extracellular matrix: implications for pea nodule initiation by Rhizobium leguminosarum, Mol. Plant–Microbe Interact., 2000, vol. 13, pp. 413–420.

    Article  CAS  PubMed  Google Scholar 

  87. Cona, A., Cenci, F., Cervelli, M., Federico, R., Mariottini, P., Moreno, S., and Angelini, R., Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl, Plant Physiol., 2003, vol. 131, pp. 803–813.

    CAS  PubMed  Google Scholar 

  88. Cona, A., Moreno, S., Cenci, F., Federico, R., and Angelini, R., Cellular re-distribution of flavin-containing polyamine oxidase in differentiating root and mesocotyl of Zea mays L. seedlings, Planta, 2005, vol. 221, pp. 265–276.

    Article  CAS  PubMed  Google Scholar 

  89. Delis, C., Dimou, M., Flemetakis, E., Aivalakis, G., and Katinakis, P., A root- and hypocotyl-specific gene coding for copper-containing amine oxidase is related to cell expansion in soybean seedlings, J. Exp. Bot., 2006, vol. 57, pp. 101–111.

    Article  CAS  PubMed  Google Scholar 

  90. Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., and Foyer, C.H., Glutathione in plants: an integrated overview, Plant Cell Environ., 2012, vol. 35, pp. 454–484.

    Article  CAS  PubMed  Google Scholar 

  91. Pivato, M., Fabrega-Prats, M., and Masi, A., Lowmolecular- weight thiols in plants: functional and analytical implications, Arch. Biochem. Biophys., 2014, vol. 560, pp. 83–99.

    Article  CAS  PubMed  Google Scholar 

  92. Schmitt, F.-J., Renger, G., Friedrich, T., Kreslavski, V.D., Zharmukhamedov, S.K., Los, D.A., Kuznetsov, V.V., and Allakhverdiev, S.I., Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms, Biochim. Biophys. Acta, 2014, vol. 1837, pp. 835–848.

    CAS  PubMed  Google Scholar 

  93. Lamport, D.T.A., The protein component of primary cell walls, Adv. Bot. Res., 1965, vol. 2, pp. 151–218.

    Article  CAS  Google Scholar 

  94. Martin, M.N., Saladores, P.H., Lambert, E., Hudson, A.O., and Leustek, T., Localization of members of the ?-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis, Plant Physiol., 2007, vol. 144, pp. 1715–1732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ferretti, M., Destro, T., Tosatto, S.C.E., La Rocca, N., Rascio, N., and Masi, A., Gamma-glutamyl transferase in the cell wall participates in extracellular glutathione salvage from the root apoplast, New Phytol., 2009, vol. 181, pp. 115–126.

    Article  CAS  PubMed  Google Scholar 

  96. Tamás, L., Alemayehu, A., Mistrík, I., and Zelinová, V., Extracellular glutathione recycling by ?-glutamyl transferase in barley root tip exposed to cadmium, Environ. Exp. Bot., 2015, vol. 118, pp. 32–39.

    Article  Google Scholar 

  97. Ohkama-Ohtsu, N., Radwan, S., Peterson, A., Zhao, P., Badr, A.F., Xiang, C., and Oliver, D.J., Characterization of the extracellular ?-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis, Plant J., 2007, vol. 49, pp. 865–877.

    CAS  PubMed  Google Scholar 

  98. Koffler, B.E., Bloem, E., Zellnig, G., and Zechmann, B., High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis, Micron, 2013, vol. 45, pp. 119–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hacham, Y., Koussevitzky, S., Kirma, M., and Amir, R., Glutathione application affects the transcript profile of genes in Arabidopsis seedling, J. Plant Physiol., 2014, vol. 171, pp. 1444–1451.

    Article  CAS  PubMed  Google Scholar 

  100. Tolin, S., Arrigoni, G., Trentin, A.R., Veljovic-Jovanovic, S., Pivato, M., Zechman, B., and Masi, A., Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant’s adaptation to environment, Proteomics, 2013, vol. 13, pp. 2031–2045.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Sharova.

Additional information

Original Russian Text © E.I. Sharova, S.S. Medvedev, 2017, published in Fiziologiya Rastenii, 2017, Vol. 64, No. 1, pp. 3–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharova, E.I., Medvedev, S.S. Redox reactions in apoplast of growing cells. Russ J Plant Physiol 64, 1–14 (2017). https://doi.org/10.1134/S1021443717010149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717010149

Keywords

Navigation