Skip to main content
Log in

Bioinformatics identification of the methylerythritol phosphate pathway associated genes in Arabidopsis thaliana with ceh1 mutant

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The methylerythritol phosphate (MEP) pathway for the production of isoprenoids is recently discovered. The current study aimed to identify MEP pathway disorder-related molecular mechanisms and potential genes in Arabidopsis thaliana. Microarray data (GSE61675) obtained from ceh1 mutant plants and corresponding parental lines were retrieved from Gene Expression Omnibus (GEO) database and were applied for differentially expressed genes (DEGs) screening. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed. Protein-protein interaction (PPI) network was then constructed and displayed by Cytoscape software. Total 762 DEGs including 620 up-regulated and 142 down-regulated genes were screened. In addition, a great many of DEGs were mainly involved in biosynthesis and metabolism-related pathways, such as stilbenoid, diarylheptanoid, and gingerol biosynthesis, and biosynthesis of terpenoids and steroids. Moreover, a PPI network contained 90 down-regulated genes and 497 up-regulated genes were obtained. Up-regulated DEGs including glutaredoxin (GRX480, cytochrome BC1 synthase (BCS1, syntaxin of plants 121 (SYP121) and A. thaliana MAP kinase 11 (ATMPK11) with higher degree in this network were hub nodes. Pathways including stilbenoid, diarylheptanoid, and gingerol biosynthesis obtained in our study were consistent with previous studies. Importantly, GRX480, BCS1 and ATMPK11 could have close interactions with the MEP pathway and may play important roles in the biosynthesis of isoprenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAVID:

database for annotation, visualization, and integrated discovery

DEGs:

differentially expressed genes

GEO:

Gene Expression Omnibus

HPL:

hydroperoxide lyase

IspH/HDR:

hydroxymethylbutenyl diphosphate reductase

JA:

jasmonic acid

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MAP kinases:

mitogen-activated protein kinases

MEcPP:

methylerythritol cyclodiphosphate

MEP:

methylerythritol phosphate

MVA:

mevalonic acid

NCBI:

National Center for Biotechnology Information

PPI:

protein-protein interaction

STRING:

Search Tool for the Retrieval of Interacting Genes

SA:

salicylic acid

References

  1. Rodríguez-Concepción, M., Campos, N., Ferrer, A., and Boronat, A., Biosynthesis of isoprenoid precursors in Arabidopsis, in Isoprenoid Synthesis in Plants and Microorganisms, Bach, T.J. and Rohmer, M., Eds., New York: Springer-Verlag, 2013, pp. 439–456.

    Google Scholar 

  2. Bloch, K., The biological synthesis of cholesterol, Science, 1965, vol. 150, pp. 19–28.

    Article  CAS  PubMed  Google Scholar 

  3. Rohmer, M., The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants, Nat. Prod. Rep., 1999, vol. 16, pp. 565–574.

    Article  CAS  PubMed  Google Scholar 

  4. Janthawornpong, K., Krasutsky, S., Chaignon, P., Rohmer, M., Poulter, C.D., and Seemann, M., Inhibition of IspH, a [4Fe–4S]2+ enzyme involved in the biosynthesis of isoprenoids via the methylerythritol phosphate pathway, J. Am. Chem. Soc., 2013, vol. 135, pp. 1816–1822.

    CAS  Google Scholar 

  5. Rodríguez-Concepción, M., The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs, Curr. Pharm. Des., 2004, vol. 10, pp. 2391–2400.

    Article  PubMed  Google Scholar 

  6. Steinbacher, S., Kaiser, J., Eisenreich, W., Huber, R., Bacher, A., and Rohdich, F., Structural basis of fosmidomycin action revealed by the complex with 2-C-methyl-D-erythritol 4-phosphate synthase (IspC). Implications for the catalytic mechanism and anti-malaria drug development, J. Biol. Chem., 2003, vol. 278, pp. 18401–18407.

    Article  CAS  PubMed  Google Scholar 

  7. Wiesner, J., Reichenberg, A., Hintz, M., Ortmann, R., Schlitzer, M., van Calenbergh, S., Borrmann, S., Lell, B., Kremsner, P.G., and Hutchinson, D., Fosmidomycin as an antimalarial agent, Isoprenoid Synthesis in Plants and Microorganisms, Bach, T.J. and Rohmer, M., Eds., New York: Springer-Verlag, 2013, pp. 119–137.

    Google Scholar 

  8. Vigani, G., Zocchi, G., Bashir, K., Philippar, K., and Briat, J.-F., Signals from chloroplasts and mitochondria for iron homeostasis regulation, Trends Plant Sci., 2013, vol. 18, pp. 305–311.

    Article  CAS  PubMed  Google Scholar 

  9. Xiao, Y., Savchenko, T., Baidoo, E.E., Chehab, W.E., Hayden, D.M., Tolstikov, V., Corwin, J.A., Kliebenstein, D.J., Keasling, J.D., and Dehesh, K., Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes, Cell, 2012, vol. 149, pp. 1525–1535.

    Article  CAS  PubMed  Google Scholar 

  10. Smyth, G., Limma: Linear Models for Microarray Data, Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Genleman, R., Carey, V.J., Huber, W., Irizarry, R.A., and Dudoit, S., Eds., New York: Springer-Verlag, 2005, pp. 397–420.

    Chapter  Google Scholar 

  11. Huang, D.W., Sherman, B.T., and Lempicki, R.A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 2008, vol. 4, pp. 44–57.

    Article  Google Scholar 

  12. Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., Doerks, T., Stark, M., Muller, J., and Bork, P., The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored, Nucleic Acids Res., 2011, vol. 39: D561–D568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 2003, vol. 13, pp. 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paseshnichenko, V.A., Regulation of terpenoid biosynthesis in plants and its relation to the biosynthesis of phenolic-compounds, Russ. J. Plant Physiol., 1995, vol. 42, pp. 699–714.

    CAS  Google Scholar 

  15. Van der Werf, M.J. and Boot, A.M., Metabolism of carveol and dihydrocarveol in Rhodococcus erythropolis DCL14, Microbiology, 2000, vol. 146, pp. 1129–1141.

    Article  PubMed  Google Scholar 

  16. Drašar, P., Isoprenoids, Chem. Int., 2015, vol. 37, p. 29.

    Google Scholar 

  17. Rodríguez-Concepción, M., Plant isoprenoids: a general overview, Plant Isoprenoids, vol. 1153, Ser. Methods in Molecular Biology, Rodríguez-Concepción, M., Ed., New York: Springer-Verlag, 2014, pp. 1–5.

    Google Scholar 

  18. Dar, T.A., Moinuddin, N.H., Idrees, M., and Ali, A., Recent trends in jasmonate signaling pathway, in Plant Signaling: Understanding the Molecular Crosstalk, Hakeem, K.R., Rehman, R.U., and Tahir, I., Eds., New Delhi, India: Springer-Verlag, 2013, pp. 277–290.

    Google Scholar 

  19. Woodson, J.D. and Chory, J., Organelle signaling: how stressed chloroplasts communicate with the nucleus, Curr. Biol., 2012, vol. 22, pp. R690–R692.

    Article  CAS  PubMed  Google Scholar 

  20. Moore, J.W., Foundation technologies in synthetic biology: tools for use in understanding plant immunity, PhD Thesis, Edinburgh: University of Edinburgh, 2012.

    Google Scholar 

  21. Koornneef, A. and Pieterse, C.M., Cross talk in defense signaling, Plant Physiol., 2008, vol. 146, pp. 839–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wagener, N. and Neupert, W., Bcs1, a AAA protein of the mitochondria with a role in the biogenesis of the respiratory chain, J. Struct. Biol., 2012, vol. 179, pp. 121–125.

    CAS  PubMed  Google Scholar 

  23. Ostojic, J., Panozzo, C., Lasserre, J.-P., Nouet, C., Courtin, F., Blancard, C., Di Rago, J.-P., and Dujardin, G., The energetic state of mitochondria modulates complex III biogenesis through the ATP-dependent activity of Bcs1, Cell Metab., 2013, vol. 18, pp. 567–577.

    Article  CAS  PubMed  Google Scholar 

  24. Eckardt, N.A., A plastidial pathway for protein isoprenylation in tobacco cells, Plant Cell, 2009, vol. 21, p. 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirt, H., Multiple roles of MAP kinases in plant signal transduction, Trends Plant Sci., 1997, vol. 2, pp. 11–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Xi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, C., Xi, J. Bioinformatics identification of the methylerythritol phosphate pathway associated genes in Arabidopsis thaliana with ceh1 mutant. Russ J Plant Physiol 63, 293–299 (2016). https://doi.org/10.1134/S1021443716020096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716020096

Keywords

Navigation