Skip to main content
Log in

Photosynthesis and anatomic–morphological characteristics of sea aster leaves on the white sea coast

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Anatomic–morphological and functional features of sea aster (Aster tripolium L.) leaves were investigated in the field study on the northern limit of A. tripolium’s range of distribution, using plants growing in the intertidal zone on the Pomorsky coast of the White Sea. The largest leaf area was found in plants grown close to the shore, near the high tide mark. In plants grown near the low tide mark, the leaf area decreased fourfold, while the leaf thickness increased by 30%. The plants sampled near the low and high tide marks showed different rates of photosynthesis and transpiration; they also differed in stomatal conductance and the number of stomata on the upper and lower leaf sides. Analysis of carbon dioxide plots of photosynthesis revealed the habitat-related differences in photosynthetic characteristics. Under saturating concentrations of carbon dioxide, the plants grown near the shore exhibited larger rates of photosynthetic electron transport and carboxylation. Characteristics of plants in the examined transect were found related to the local environmental conditions. A hypothesis is put forward that A. tripolium possesses an inducible CO2 concentrating mechanism during the growing season under northern summer conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCM:

CO2-concentrating mechanism

Ci :

inorganic carbon forms (CO2 + HCO3)

CVC:

cell volume per chloroplast

J max/V cmax :

ratio of maximal rates of electron transport and carboxylation

P n :

net photosynthesis

References

  1. Uedo, A., Kanechio, M., Uno, Y., and Inagaki, N., Photosynthetic limitations of a halophyte sea aster (Aster tripolium L.) under water stress and NaCl stress, J. Plant Res., 2003, vol. 116, pp. 65–70.

    Google Scholar 

  2. Ramani, B., Reeck, Th., Debez, A., Stelzer, R., Huchzermeyer, B., Schmidt, A., and Papenbrock, J., Aster tripolium and Sesuvium portulacastrum L.: two halophytes, two strategies to survive in saline habitats, Plant Physiol. Biochem., 2006, vol. 44, pp. 395–408.

    Article  CAS  PubMed  Google Scholar 

  3. Flowers, T., Galal, H., and Bromham, L., Evolution of halophytes: multiple origins of salt tolerance in land plants, Funct. Plant Biol., 2010, vol. 37, pp. 604–612.

    Article  Google Scholar 

  4. Anderson, U., Samson, I., and Levinsh, G., Protection of photosynthesis in coastal salt marsh plants Aster tripolium and Hydrocotyle vulgaris in conditions of increased soil salinity, Environ. Exp. Biol., 2012, vol. 10, pp. 89–97.

    Google Scholar 

  5. Levinsh, G., Biological basis of biological diversity: physiological adaptation of plants to heterogeneous habitats along a sea coast, Acta Univ. Latv., Ser. Biol., 2006, vol. 710, pp. 53–79.

    Google Scholar 

  6. Shennan, C., Gupta, N.K., Gupta, S., and Hasegawa, H., Effect of NaCl salinity on photosynthetic rate, transpiration rate, and oxidative stress tolerance in contrasting wheat genotypes, Photosynthetica, 2005, vol. 43, pp. 609–613.

    Article  Google Scholar 

  7. Huiskes, A.H.L., Koutstaal, B.P., Wielemaker-Van den Dool, A., and Markusse, M.M., A study on polymorphism in Aster tripolium L. (Sea Aster), Plant Biol., 2000, vol. 2, pp. 547–557.

    Article  Google Scholar 

  8. Markovskaya, E.F., Sergienko, L.A., Shklyarevich, G.A., Sonina, A.V., Starodubtseva, A.A., and Smol’kova, O.V., Prirodnyi kompleks poberezh’ya Belogo morya (Natural Complex of the White Sea Coast), Petrozavodsk: Karel. Nauch. Tsentr, Ross. Akad. Nauk, 2010.

    Google Scholar 

  9. Uno, Y., Kanechi, M., Inagaki, N., Sugimoto, M., and Maekawa, S., The evaluation of salt tolerance during germination and vegetative growth of asparagus, table beet and sea aster, J. Jpn. Soc. Hortic. Sci., 1996, vol. 65, pp. 579–585.

    Article  CAS  Google Scholar 

  10. Ramenskaya, M.L., Analiz flory Murmanskoi oblasti i Karelii (Analysis of Flora in Murmansk Oblast and Karelia), Leningrad: Nauka, 1983.

    Google Scholar 

  11. Zaslavskaya, N.V., Flora of the saline ecotopes of the White Sea West Coast, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Petrozavodsk: Petrozavodsk. Gos. Univ., 2007.

    Google Scholar 

  12. Kravchenko, A.V., Konspekt flory Karelii (Flora of Karelia), Petrozavodsk: Karel. Nauch. Tsentr, Ross. Akad. Nauk, 2007.

    Google Scholar 

  13. Farquhar, G.D., Caemmerer, S., and Berry, J.A., A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants, Planta, 1980, vol. 149, pp. 78–90.

    Article  CAS  PubMed  Google Scholar 

  14. Caemmerer, S. and Farquhar, G.D., Some relationships between the biochemistry of photosynthesis and the gas exchange rates of leaves, Planta, 1981, vol. 153, pp. 376–387.

    Article  Google Scholar 

  15. Harley, P.C. and Sharkey, T.D., An improved model of C3 photosynthesis at high CO2: reversed O2 sensitivity explained by lack of glycerate re-entry into the chloroplast, Photosynth. Res., 1991, vol. 27, pp. 169–178.

    CAS  PubMed  Google Scholar 

  16. Parsons, R. and Ogston, S., Photosynthesis Assistant: Tools for Analysis of Photosynthetic Data, Versio. 1.1.2, Dundee, UK: Dundee Sci., 1999.

    Google Scholar 

  17. Furst, G.G., Metody anatomo-gistokhimicheskogo issledovaniya rastitel’nykh tkanei (Methods for Anatomical and Histochemical Investigations of Plant Tissues), Moscow: Nauka, 1979.

    Google Scholar 

  18. Mokronosov, A.T. and Borzenkova, R.A., Methods for quantifying the functional activity of photosynthetic tissues and organs, Tr. Prikl. Bot. Genet. Sel., 1978, vol. 61, no. 3, pp. 119–133.

    Google Scholar 

  19. Morozova, K.V., Gulyaeva, E.N., and Markovskaya, E.F., Anatomical and morphological characteristics of Aster tripolium L. on the White Sea Coast, Uch. Zapiski Petrozavodsk. Gos. Univ., Ser.: Estestv. Techn. Nauki, 2014, vol. 2, no. 8 (145), pp. 21–25.

    Google Scholar 

  20. Grigore, M.-N., Toma, C., and Bo caiu, M., Ecological implications of bulliform cells on halophytes, in salt and water stress natural conditions, Biol. Veg., 2010, vol. 56, no. 2, pp. 5–15.

    Google Scholar 

  21. Burkovskaya, E.V., Mesostructure of vascular plant leaves on the supralittoral of Japan Sea, Vestn. Krasnoyarsk. Gos. Agrar. Univ., 2008, no. 2, pp. 107–111.

    Google Scholar 

  22. Goryshina, T.K., Fotosinteticheskii apparat rastenii i usloviya sredy (Photosynthetic Apparatus of Plants and Environment), Leningrad: Leningr. Gos. Univ., 1989.

    Google Scholar 

  23. Voronkova, N.M., Burkovskaya, E.V., Bezdeleva, T.A., and Burundukova, O.L., Morphological and biological features of plants related to their adaptation to coastal habitats, Russ. J. Ecol., 2008, vol. 39, pp. 1–7.

    Article  Google Scholar 

  24. Pronina, N.A., The organization and physiological role of the CO2–CM in microalgal photosynthesis, Russ. J. Plant Physiol., 2000, vol. 47, pp. 706–714.

    CAS  Google Scholar 

  25. Rascio, N., The underwater life of secondarily aquatic plants: some problems and solutions, Crit. Rev. Plant Sci., 2002, vol. 21, pp. 401–427. do. 10.1080/073526029104429.

    Article  Google Scholar 

  26. Pederson, O., Colmer, T.D., and Sand-Jensen, K., Underwater photosynthesis of submerged plants–recent advances and methods, Front. Plant Sci., 2013, vol. 4, p. 140. do. 10.3389/fpls.2013.0014.

    Google Scholar 

  27. Hikosaka, K., Ishikawa, K., Borjigidai, A., Muller, O., and Onoda, Y., Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate Hill, J. Exp. Bot., 2006, vol. 57, pp. 291–302.

    Article  CAS  PubMed  Google Scholar 

  28. Markovskaya, E., Sonina, A., Sergienko, L., Morozova, K., and Elkina, N., Morphological and functional peculiarities of saltmarsh plants and epilithic lichens in tidal conditions of Russian Arctic seas, Czech. Polar Rep., 2014, vol. 4, pp. 168–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Markovskaya.

Additional information

Original Russian Text © E.F. Markovskaya, A.A. Kosobryukhov, K.V. Morozova, E.N. Gulyaeva, 2015, published in Fiziologiya Rastenii, 2015, Vol. 62, No. 6, pp. 847–853.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markovskaya, E.F., Kosobryukhov, A.A., Morozova, K.V. et al. Photosynthesis and anatomic–morphological characteristics of sea aster leaves on the white sea coast. Russ J Plant Physiol 62, 830–836 (2015). https://doi.org/10.1134/S1021443715060126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715060126

Keywords

Navigation