Skip to main content
Log in

Auxin redistribution and shifts in PIN gene expression during Arabidopsis grafting

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Auxin is important in the development of plant vascular tissues. Reconnection of vascular bundles between scion and stock is a primary aim of grafting, and polar auxin transport greatly affects the formation of a continuous vascular model. The role of auxin in the process of graft-union development was studied by grafting the seedlings of Arabidopsis thaliana (L.) Heynh. DR5:GUS marker plants, which exert the auxinspecific responses. Auxin induced the DR5:GUS expression in the vascular bundles around graft surface and stimulated the formation of multiple vascular bundle reconnections on the third day after grafting (DAG). DR5:GUS expression was delayed for one day in both scion and stock and dramatically declined by the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Vascular bundle reconnection was observed only on the 4th DAG. These results suggest that auxin stimulates the reconnection of the vascular bundles, whereas NPA inhibits it. We studied the role of PIN proteins in graft development by grafting seedlings of PIN:GUS plants. PIN had different expression patterns in the graft process. Expression levels of PIN genes were analyzed by real-time PCR. All PIN genes had the higher expression level at the third DAG. We conclude that auxin stimulates the development of graft unions, and the patterns of expressions of PIN family genes can affect the development of graft-union by controlling the auxin flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAG:

day(s) after grafting

NPA:

N-1-naphthylphthalamic acid

WT:

wild-type

References

  1. Scarpella, E., Marcos, D., Friml, J., and Berleth, T., Control of leaf vascular patterning by polar auxin transport, Genes Dev., 2006, vol. 20, pp. 1015–1027.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Scarpella, E., Barkoulas, M., and Tsiantis, M., Control of leaf and vein development by auxin, Cold Spring Harb., Perspect. Biol., 2010, vol. 2(1): a001511, doi: 10.1101/cshperspect.a001511

    Article  Google Scholar 

  3. Klee, H.J. and Romano, C.P., The roles of phytohormones in development as studied in transgenic plants, Crit. Rev. Plant Sci., 1994, vol. 13, pp. 311–324.

    Article  CAS  Google Scholar 

  4. Sachs, T., Integrating cellular and organismic aspects of vascular differentiation, Plant Cell Physiol., 2000, vol. 41, pp. 649–656.

    Article  CAS  PubMed  Google Scholar 

  5. Petrášek, J., Mravec, J., Bouchard, R., Blakeslee, J.J., Abas, M., Seifertová, D., Wiśniewska, J., Tadele, Z., Kubeš, M., Covanová, M., Dhonukshe, P., Sküpa, P., Benková, E., Perry, L., Křeček, P., Lee, O.P., Fink, G.R., Geisler, M., Murphy, A.S., Luschnig, C., Zažímalová, E., and Friml, J., PIN proteins perform a rate-limiting function in cellular auxin efflux, Science, 2006, vol. 312, pp. 914–918.

    Article  PubMed  Google Scholar 

  6. Tsugeki, R., Ditengou, F.A., Sumi, Y., Teale, W., Palme, K., and Okada, K., NO VEIN mediates auxindependent specification and patterning in the Arabidopsis embryo, shoot, and root, Plant Cell, 2009, vol. 21, pp. 3133–3151.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Drdová, E.J., Synek, L., Pečenková, T., Hála, M., Kulich, I., Fowler, J.E., Murphy, A.S., and Zárský, V., The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis, Plant J., 2013, vol. 73, pp. 709–719.

    Article  PubMed  Google Scholar 

  8. Vieten, A., Vanneste, S., Wis-niewska, J., Benková, E., Benjamins, R., Beeckman, T., Luschnig, C., and Friml, J., Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression, Development, 2005, vol. 132, pp. 4521–4531.

    Article  CAS  PubMed  Google Scholar 

  9. Ádníková, P., Petrášek, J., Marhavý, P., Raz, V., Vandenbussche, F., Ding, Z.J., Schwarzerová, K., Morita, M.T., Tasaka, M., Hejátko, J., van der Straeten, D., Friml, J., and Benková, E., Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana, Development, 2010, vol. 137, pp. 607–617.

    Article  Google Scholar 

  10. Guenot, B., Bayer, E., Kierzkowski, D., Smith, R.S., Mandel, T., Ádníková, P., Benková, E., and Kuhlemeier, C., Pin1-independent leaf initiation in Arabidopsis, Plant Physiol., 2012, vol. 159, pp. 1501–1510.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sauer, M., Balla, J., Luschnig, C., Wis-niewska, J., Reinöhl, V., Friml, J., and Benková, E., Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity, Genes Dev., 2006, vol. 20, pp. 2902–2911.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Noh, B., Bandyopadhyay, A., Peer, W.A., Spalding, E.P., and Murphy, A.S., Enhanced graviand phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1, Nature, 2003, vol. 423, pp. 999–1002.

    Article  CAS  PubMed  Google Scholar 

  13. Haga, K. and Sakai, T., Differential roles of auxin efflux carrier PIN proteins in hypocotyl phototropism of etiolated Arabidopsis seedlings depend on the direction of light stimulus, Plant Signal. Behav., 2013, vol. 8(1): e22556, doi 10.416/psb.22556

    Article  PubMed Central  PubMed  Google Scholar 

  14. Blakeslee, J.J., Bandyopadhyay, A., Lee, O.R., Mravec, J., Titapiwatanakan, B., Sauer, M., Makam, S.N., Cheng, Y., Bouchard, R., Adamec, J., Geisler, M., Nagashima, A., Sakai, T., Martinoia, E., Friml, J., Peer, W.A., and Murphy, A.S., Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis, Plant Cell, 2007, vol. 19, pp. 131–147.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Luschnig, C., Gaxiola, R.A., Grisafi, P., and Fink, G.R., EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana, Genes Dev., 1998, vol. 12, pp. 2175–2187.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Haga, K. and Sakai, T., PIN auxin efflux carriers are necessary for pulse-induced but not continuous lightinduced phototropism in Arabidopsis, Plant Physiol., 2012, vol. 160, pp. 763–776.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Friml, J., Benková, E., Blilou, I., Wis-niewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jürgens, G., and Palme, K., AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis, Cell, 2002, vol. 108, pp. 661–673.

    Article  CAS  PubMed  Google Scholar 

  18. Turnbull, C.G., Booker, J.P., and Leyser, H.M., Micrografting techniques for testing long-distance signaling in Arabidopsis, Plant J., 2002, vol. 32, pp. 255–262.

    Article  CAS  PubMed  Google Scholar 

  19. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G., FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis, Science, 2007, vol. 316, pp. 1030–1033.

    Article  CAS  PubMed  Google Scholar 

  20. Yin, H., Yan, B., Sun, J., Jia, P., Zhang, Z., Yan, X., Chai, J., Ren, Z., Zheng, G., and Liu, H., Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation, J. Exp. Bot., 2012, vol. 63, pp. 695–709.

    Article  Google Scholar 

  21. Jefferson, R.A., Assaying chimeric genes in plants: the GUS gene fusion system, Plant Mol. Biol. Rep., 1987, vol. 5, pp. 387–405.

    Article  CAS  Google Scholar 

  22. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W., GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J., 1987, vol. 6, pp. 3901–3907.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Mu, C., Wang, S., Pan, J., Zhang, S., Yu, G., Chen, N., Wang, Z., and Liu, H., Analysis of highly expressed genes in the late zygotene to pachytene stages of meiotic prophase I in David Lily, Russ. J. Plant Physiol., 2012, vol. 59, pp. 389–397.

    Article  CAS  Google Scholar 

  24. Zhou, J., Sebastian, J., and Lee, J.Y., Signaling and gene regulatory programs in plant vascular stem cells, Genesis, 2011, vol. 49, pp. 885–904.

    Article  CAS  PubMed  Google Scholar 

  25. Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., and Scheres, B., The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots, Nature, 2005, vol. 433, pp. 39–44.

    Article  CAS  PubMed  Google Scholar 

  26. Friml, J., Subcellular trafficking of PIN auxin efflux carriers in auxin transport, Eur. J. Cell Biol., 2010, vol. 89, pp. 231–235.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Jin, Z., Yin, H. et al. Auxin redistribution and shifts in PIN gene expression during Arabidopsis grafting. Russ J Plant Physiol 61, 688–696 (2014). https://doi.org/10.1134/S102144371405015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144371405015X

Keywords

Navigation