Skip to main content
Log in

Role of 5-aminolevulinic acid in the formation of winter rape resistance to sulfonylurea herbicides

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Growing of winter rape (Brassica napus L.) plants for 7–8 days in the presence of a sulfonylurea herbicide Magnum (methsulfuron methyl; 200 and 500 mg/L) exerted an organ-specific influence on the seedlings: suppressed hypocotyl and root growth and increased the accumulation of fresh weight of cotyledonary leaves. Exogenous 5-aminolevulinic acid (ALA; 0.1, 1.0, and 10 mg/L) partially negated the adverse effect of Magnum on the length and fresh weight of roots and hypocotyls and stimulated the development of cotyledons. The herbicide suppressed the activity of ascorbate peroxidase (APX). The addition of ALA to the 200 mg/L herbicide solution caused a steady activation of APX as compared with the effect of herbicide alone. In plants grown on Magnum solutions, the activity of glutathione reductase (GR) rose. Positive effect of exogenous ALA was only observed when 500 mg/L herbicide was used (Magnum-500 type of treatment). In plants grown on the Magnum solution, the content of reduced and oxidized forms of glutathione rose. In contrasty, exogenous ALA reduced the total content of glutathione but in this case the ratio between its reduced and oxidized forms rose. In the presence of the herbicide, the content of anthocyans considerably decreased and upon the addition of exogenous ALA their levels rose. In rape plants treated with Magnum, the ability to generate superoxide anion radical was essentially the same as in control plants; however, the content of hydrogen peroxide (H2O2) therein rose. The addition of ALA to the herbicide reduced the ability to generate superoxide anion radical and the level of H2O2. The activity of acetolactate synthase remained on the control level when 200 mg/L Magnum was used, decreased in the plants of Magnum-500 treatment, and rose upon the addition of exogenous ALA to this type of treatment. It was concluded that ALA had a positive effect on the development of winter rape resistance to Magnum via stimulation of growth processes, activation of APX and GR, predominant elevation of the content of reduced glutathione and anthocyans, and partial recovery of acetolactate synthase activity, which on the whole caused a decrease in the H2O2 level and in the ability of plants to generate superoxide anion radical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

5-aminolevulinic acid

ALS:

acetolactate synthase

APX:

ascorbate peroxidase

GR:

glutathione reductase

GSH:

glutathione reduced

GSSG:

glutathione oxidized

PGR:

plant growth regulators

SUH:

sulfonylurea herbicide

References

  1. Kreidi, M. and Aleksandrov, O.T., Use of herbicides, sulfonylurea derivatives, from Dyupont Company for plant protection, Agrimatko, 2001, no. 2, pp. 13–15.

    Google Scholar 

  2. Soroka, S.V. and Soroka, L.I., Laren in winter wheat and oat crops, Akhova Raslin, 2001, no. 2, pp. 21–23.

    Google Scholar 

  3. Chaleff, R.S. and Mauvais, C.J., Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants, Science, 1984, vol. 224, pp. 1443–1445.

    Article  CAS  PubMed  Google Scholar 

  4. Averina, N.G., Yaronskaya, E.B., Nedved’, E.L., and Tumilovich, A.V., Effect of exogenous 5-aminolevulinic acid on the early developmental stages of winter rape (Brassica napus) treated with sulfonylurea herbicide Magnum, Vesti NAN Belarusi, Ser. Biol. Sci., 2012, no. 4, pp. 34–37.

    Google Scholar 

  5. Bulavin, L.A., Nebyshinets, S.S., Belanovskaya, M.A., Gedrovich, S.V., Khankevich, V.A., and Apresyan, O.G., Afteraction of herbicide Laren on spring rape plants, Sb. nauch. tr. “Zemledelie i selektsiya v Belarusi” (Proc. Agriculture and Selection in Belarus), Minsk: Nauchnopraktich. tsentr Nats. Akad. Nauk Belarusi po zemledeliyu, 2009, no. 45, pp. 63–73.

    Google Scholar 

  6. Zhang, W.F., Zhang, F., Raziuddin, R., Gong, H.J., Yang, Z.M., Lu, L., Ye, O.F., and Zhou, W.J., Effect of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress, J. Plant Growth Regul., 2008, vol. 27, pp. 159–169.

    Article  Google Scholar 

  7. Averina, N.G. and Yaronskaya, E.B., Biosintez tetrapirrolov v rasteniyakh (Biosynthesis of Tetrapyrrols in Plants), Minsk: Belaruskaya navuka, 2012.

    Google Scholar 

  8. Hotta, Y., Tanaka, T., Luo, B.S., Takeuchi, Y., and Konnai, M., Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid, J. Pest. Sci., 1998, vol. 23, pp. 29–33.

    Article  CAS  Google Scholar 

  9. Wang, L.J., Jiang, W.B., and Huang, B.J., Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions, Physiol. Plant., 2004, vol. 121, pp. 258–264.

    Article  CAS  PubMed  Google Scholar 

  10. Nishiharsa, E., Kondo, K., Parvez, M.M., Takahashi, K., Watanabe, K., and Tanaka, K., Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea), J. Plant Physiol., 2003, vol. 160, pp. 1085–1091.

    Article  Google Scholar 

  11. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  12. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  13. Aono, M., Saji, H., Fujiyama, K., Sugita, M., Kondo, N., and Tanaka, K., Decrease in activity of glutathione reductase enhances paraquat sensitivity in transgenic Nicotiana tabacum, Plant Physiol., 1995, vol. 107, pp. 645–648.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Shalygo, N.V., Shcherbakov, R.A., Domanskaya, I.N., and Radyuk, M.S., Spectrofluorometric method for oxidized and reduced glutathione measurement in plants, Fiziol. Biokh. Kul’t. Rast., 2007, vol. 39, pp. 264–270.

    CAS  Google Scholar 

  15. Shorning, B.Yu., Smirnova, E.G., Yaguzhinskii, L.S., and Vanyushin, B.F., Necessity of superoxide production for development of etiolated wheat seedlings, Biochemistry (Moscow), 2000, vol. 65, pp. 1357–1361.

    Article  CAS  Google Scholar 

  16. Corbett, J.T., The scopoletin assay for hydrogen peroxide. A review and a better method, J. Biochem. Biophys. Methods, 1989, vol. 18, pp. 297–308.

    Article  CAS  PubMed  Google Scholar 

  17. Mabry, T.J., Markham, K.R., and Thomas, M.B., The Systematic Identification of Flavonoids, New York: Springer-Verlag, 1970.

    Book  Google Scholar 

  18. Sato, H. and Takamizo, T., Conferred resistance to an acetolactate synthase-inhibiting herbicide in transgenic tall fescue (Festuca arundinacea Schreb.), Hort. Sci., 2009, vol. 4, pp. 1254–1257.

    Google Scholar 

  19. Nebyshenets, S.S. and Vertinskii, A.V., Sensitivity of dicotyledonous plants to herbicides, sulfonylurea derivatives, Mater. nauch.-praktich. konf. “Nauka — Proizvodstvu” (Proc. Theoretical Practical Conf. Science for Industry), Grodno, 2000, p. 93.

    Google Scholar 

  20. Averina, N.G., Chiruk, S.L., Vershilovskaya, I.V., Samovich, T.V., Obukhovskaya, L.V., Nedved’, E.L., Shcherbakov, R.A., Usatov, A.V., and Yaronskaya, E.B., Influence of NaCl on the early developmental stages of etiolated Cucumis sativus and Hordeum vulgare, seedlings, Vesti Nats. Akad. Nauk Belarusi, Ser. Biol., 2012, no. 2, pp. 87–90.

    Google Scholar 

  21. Kitajima, K., Impact of cotyledon and leaf removal on seedling survival in three tree species with contrasting cotyledon functions, Biotropica, 2003, vol. 35, pp. 429–434.

    Article  Google Scholar 

  22. Zhang, S., Zhao, C., and Lamb, E.G., Cotyledon damage affects seed number through final plant size in the annual grassland species Medicago lupulina, Ann. Bot., 2011, vol. 107, pp. 437–442.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Li, D.M., Zhang, J., Sun, W.J., Li, Q., and Dai, A.H., 5-aminolevulinic acid pretreatment mitigates drought stress of cucumber leaves through altering antioxidant enzyme activity, Sci. Hort., 2011, vol. 4, pp. 820–828.

    Article  Google Scholar 

  24. Xu, F., Chang, J., Cheng, S.Y., Zhu, J., Li, L.L., Wang, Y., and Cheng, H., Promotive effect of 5-aminolevulinic acid on the antioxidant system in Ginkgo biloba leaves, Afr. J. Biotechnol., 2009, vol. 8, pp. 3769–3776.

    CAS  Google Scholar 

  25. Kocsy, G., Galiba, G., and Brunold, C., Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants, Physiol. Plant., 2001, vol. 113, pp. 158–164.

    Article  CAS  PubMed  Google Scholar 

  26. Kevin, G., Kevin, D., and Winefield, C., Anthocyanins: Biosynthesis, Functions, and Applications, New York: Springer, 2009.

    Google Scholar 

  27. Nie, X., Zhao, Z.P., Chen, G.P., Zhang, B., Ye, M., and Hu, Z.L., Brassica napus possesses enhanced antioxidant capacity via heterologous expression of anthocyanin pathway gene transcription factors, Russ. J. Plant Physiol., 2013, vol. 60, pp. 108–115.

    Article  CAS  Google Scholar 

  28. Xie, L., Wang, Z., Cheng, X., Gao, J., Zhang, Z., and Wang, L., 5-aminolevulinic acid promotes anthocyanin accumulation in Fuji apples, Plant Growth Regul., 2013, vol. 69, pp. 295–303.

    Article  CAS  Google Scholar 

  29. Kapchina-Toteva, V., Slavov, S., Batchvarova, R., Krantev, A., Stefanov, D., and Uzunova, A., Stress markers in chlorosulfuron-tolerant transgenic tobacco plants, Bulg. J. Plant Physiol., 2004, vol. 30, pp. 103–111.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Averina.

Additional information

Original Russian Text © N.G. Averina, E.L. Nedved’, R.A. Shcherbakov, I.V. Vershilovskaya, E.B. Yaronskaya, 2014, published in Fiziologiya Rastenii, 2014, Vol. 61, No. 5, pp. 721–729.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averina, N.G., Nedved’, E.L., Shcherbakov, R.A. et al. Role of 5-aminolevulinic acid in the formation of winter rape resistance to sulfonylurea herbicides. Russ J Plant Physiol 61, 679–687 (2014). https://doi.org/10.1134/S1021443714040037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443714040037

Keywords

Navigation