Skip to main content
Log in

Permeability of Polymer Membranes Based on Polyimides Towards Helium

  • THEORY AND SIMULATION
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The approach to the prediction of permeability of polymer membranes based on polyimides and polyamidoimides towards helium is described. According to the approach, the activation energy of helium penetration is expressed by a relationship involving the van der Waals volume of the repeat unit and a set of atomic parameters characterizing the contribution of each of the atoms and intermolecular interaction types into the value of activation energy. The contributions of the imide cycles, type of the connection (meta-, para-, or ortho-), and of the CF3, CH3, CO, Cl, F, and SO2 polar groups have been accounted for. Repeated solution of the redundant set of equations obtained on the basis of the proposed relationship has afforded the parameters giving the correspondence of the calculated values and the experimental data on the membranes permeability with correlation coefficient 0.965. Hence, the possibility to search for the structures of polyimides and polyamidoimides with the target permeability without laborious and expensive experiments has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. Imtiaz, M. H. D. Othman, A. Jilani, I. U. Khan, R. Kamaludin, J. Iqbal, and A. G. Al-Sehemi, Membranes 12, 1 (2022).

    Google Scholar 

  2. A. Iulianelli and E. Drioli, Fuel Process. Technol. 206, 106464 (2020).

  3. T. E. Rufford, K. I. Chan, S. H. Huang, and E. F. May, Adsorpt. Sci. Technol. 32, 49 (2014).

    Article  CAS  Google Scholar 

  4. C. A. Scholes and U. K. Ghosh, Membranes 7, 1 (2017).

    Article  Google Scholar 

  5. M. Alders, D. Winterhalder, and M. Wessling, Sep. Purif. Technol. 189, 433 (2017).

    Article  CAS  Google Scholar 

  6. R. Sidhikku Kandath Valappil, N. Ghasem, and M. Al-Marzouqi, J. Ind. Eng. Chem. 98, 103 (2021).

    Article  CAS  Google Scholar 

  7. Y. N. Sazanov, Russ. J. Appl. Chem. 74, 1253 (2001).

    Article  CAS  Google Scholar 

  8. Z. Dai, J. Deng, X. He, C. A. Scholes, X. Jiang, B. Wang, H. Guo, Y. Ma, and L. Deng, Sep. Purif. Technol. 274, 119044 (2021).

  9. J. Sunarso, S. S. Hashim, Y. S. Lin, and S. M. Liu, Sep. Purif. Technol. 176, 335 (2017).

    Article  CAS  Google Scholar 

  10. A. Soleimany, S. S. Hosseini, and F. Gallucci, Chem. Eng. Process. 122, 296 (2017).

    Article  CAS  Google Scholar 

  11. H. Sanaeepur, A. Ebadi Amooghin, S. Bandehali, A. Moghadassi, T. Matsuura, and B. Van der Bruggen, Prog. Polym. Sci. 91, 80 (2019).

    Article  CAS  Google Scholar 

  12. Igor V. Volgin, Pavel A. Batyr, Andrey V. Matseevich, Alexey Yu. Dobrovskiy, Maria V. Andreeva, Victor M. Nazarychev, Sergey V. Larin, Mikhail Ya. Goikhman, Yury V. Vizilter, Andrey A. Askadskii, and Sergey V. Lyulin, ACS Omega 7 (48), 43678 (2022).

    Google Scholar 

  13. S. Velioğlu, S. B. Tantekin-Ersolmaz, and J. W. Chew, J. Membr. Sci. 543, 233 (2017).

    Article  Google Scholar 

  14. L. M. Robeson, C. D. Smith, and M. Langsam, J. Membr. Sci. 132, 33 (1997).

    Article  CAS  Google Scholar 

  15. J. Y. Park and D. R. Paul, J. Membr. Sci. 125, 23 (1997).

    Article  CAS  Google Scholar 

  16. V. Ryzhikh, D. Tsarev, A. Alentiev, and Y. Yampolskii, J. Membr. Sci. 487, 189 (2015).

    Article  CAS  Google Scholar 

  17. A. Y. Alentiev, K. A. Loza, and Y. P. Yampolskii, J. Membr. Sci. 167, 91 (2000).

    Article  CAS  Google Scholar 

  18. Y. Hirayama, T. Yoshinaga, Y. Kusuki, K. Ninomiya, T. Sakakibara, and T. Tamari, J. Membr. Sci. 111, 169 (1996).

    Article  CAS  Google Scholar 

  19. C. J. Cornelius and E. Marand, J. Membr. Sci. 202, 97 (2002).

    Article  CAS  Google Scholar 

  20. M. R. Coleman and W. J. Koros, J. Polym. Sci., Polym. Phys. Ed. 32, 1915 (1994).

    Article  CAS  Google Scholar 

  21. L. M. Costello and W. J. Koros, J. Polym. Sci., Polym. Phys. Ed. 33, 135 (1995).

    Article  CAS  Google Scholar 

  22. D. Ayala, A. E. Lozano, J. De Abajo, C. García-Perez, J. G. De La Campa, K. V. Peinemann, B. D. Freeman, and R. Prabhakar, J. Membr. Sci. 215, 61 (2003).

    Article  CAS  Google Scholar 

  23. T. A. Barbari, W. J. Koros, and D. R. Paul, J. Membr. Sci. 42, 69 (1989).

    Article  CAS  Google Scholar 

  24. M. E. Rezac and B. Schöberl, J. Membr. Sci. 156, 211 (1999).

    Article  CAS  Google Scholar 

  25. T. H. Kim, W. J. Koros, and G. R. Husk, J. Membr. Sci. 46, 43 (1989).

    Article  CAS  Google Scholar 

  26. Z. K. Xu, M. Böhning, J. Springer, F. P. Glatz, and R. Mülhaupt, J. Polym. Sci., Polym. Phys. Ed. 35, 1855 (1997).

    Article  CAS  Google Scholar 

  27. T. H. Kim, W. J. Koros, G. R. Husk, and K. C. O’Brien, J. Membr. Sci. 37, 45 (1988).

    Article  Google Scholar 

  28. Y. Hirayama, T. Yoshinaga, S. Nakanishi, and Y. Kusuki, in Polymer Membranes in Gas and Vapor Separation, Ed. by. B. D. Freeman, and I. Pinnau (ACS, Washington, DC, 1999), p. 194.

    Google Scholar 

  29. W. H. Lin, R. H. Vora, and T. S. Chung, J. Polym. Sci., Polym. Phys. Ed. 38, 2703 (2000).

    Article  CAS  Google Scholar 

  30. A. P. Korikov, Ya. S. Vygodskii, and Yu. P. Yampol’skii, Polym. Sci., Ser. A 43 (6), 638 (2001).

    Google Scholar 

  31. D. Fritsch and K. V. Peinemann, J. Membr. Sci. 99, 29 (1995).

    Article  CAS  Google Scholar 

  32. M. Al-Masri, H. R. Kricheldorf, and D. Fritsch, Macromolecules 32, 7853 (1999).

    Article  CAS  Google Scholar 

  33. M. Al-Masri, D. Fritsch, and H. R. Kricheldorf, Macromolecules 33, 7127 (2000).

    Article  CAS  Google Scholar 

  34. N. N. Fateev, V. I. Solomakhin, B. A. Baiminov, A. V. Chuchalov, D. A. Sapozhnikov, and Y. S. Vygodskii, Polym. Sci., Ser. C 62 (2), 266 (2020).

    Article  CAS  Google Scholar 

  35. M. D. Guiver, G. P. Robertson, Y. Dai, F. Bilodeau, Y. S. Kang, K. J. Lee, J. Y. Jho, and J. Won, J. Polym. Sci., Part A: Polym. Chem. 40 (23), 4193 (2002).

    Article  CAS  Google Scholar 

  36. Y. Xiao, Y. Dai, T.-S. Chung, and M. D. Guiver, Macromolecules 38 (24), 10042 (2005).

    Article  CAS  Google Scholar 

  37. S. S. Hosseini and T. S. Chung, J. Membr. Sci. 328 (1–2), 174 (2009).

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by Russian Science Foundation (project 22-13-00066), https://rscf.ru/en/project/22-13-00066/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Askadskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Karpushkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askadskii, A.A., Matseevich, A.V., Volgin, I.V. et al. Permeability of Polymer Membranes Based on Polyimides Towards Helium. Polym. Sci. Ser. A 65, 192–212 (2023). https://doi.org/10.1134/S0965545X2370089X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X2370089X

Navigation