Skip to main content
Log in

pH-Responsive Calcium Alginate Microspheres Modified with Chitosan for Immobilization of Antibiotic Cefotaxime

  • MEDICAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

pH-Responsive chitosan-modified calcium alginate microspheres with an average diameter of 2.0 ± 0.05 mm for immobilization of antibiotic cefotaxime are obtained by the ionotropic gelation technique. The efficiency of cefotaxime encapsulation is 95–97%. The formation of polyelectrolyte complex alginate-chitosan in media with different pH values is studied by conductometry and dynamic light scattering. It is shown that the swelling of microspheres and the release of cefotaxime under in vitro conditions in media simulating biological fluids in the human body at peroral delivery are pH-dependent processes. Analysis of the kinetic data on the swelling of microspheres and the release of drug within the framework of the Korsmeyer-Peppas mathematical model demonstrates that the diffusion mechanism deviates from the classical Fick mechanism. This finding can probably be explained by interaction of the drug with the polymer matrix. It is found that presence of the surface chitosan layer on calcium alginate microspheres makes it possible to increase the release time of cefotaxime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. S. Severin, Russ. Chem. Rev. 84 (1), 43 (2015).

    Article  CAS  Google Scholar 

  2. A. Shah, S. Aftab, F. J. Iftikhar, J. Nisar, and M. N. Ashiq, J. Drug. Delivery Sci. Technol. 62 (2021).

  3. L. R. Volpatti, D. M. Burns, A. Basu, R. Langer, and D. G. Anderson, J. Control. Release 338, 71 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. G. D. Cha, T. Kang, S. Baik, D. Kim, S. H. Choi, and T. Hyeon, J. Control. Release 328, 350 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. P. B. Kajjari, L. S. Manjeshwar, and T. M. Aminabhavi, AAPS PharmSciTech 13 (4), 1147.

  6. D. Grigor’ev, K. B. Musabekov, N. K. Musabekov, and Z. Z. Kusainova, Polym. Sci., Ser. A 59 (4), 506 (2017).

    Article  Google Scholar 

  7. K. Teng, Q. An, Y. Chen, Y. Zhang, and Y. Zhao, ACS Biomater. Sci. Eng. 7 (4), 1302 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. V. N. Pavlyuchenko, S. S. Ivanchev, V. F. Danilichev, V. S. Proshina, O. N. Primachenko, S. Y. Khaikin, V. A. Trunov, V. T. Lebedev, and Y. V. Kul’velis, Polym. Sci., Ser. A 53 (4), 323 (2011).

    Article  CAS  Google Scholar 

  9. R. K. Mudarisova, L. A. Badykova, G. A. Azamatova, M. T. Aznabaev, and R. M. Islamova, Russ. J. Appl. Chem. 86 (4), 606 (2013).

    Article  CAS  Google Scholar 

  10. F. M. Glycose, G. Lollo, C. Remnant-Lopez, F. Quaglia, and M. J. Alonso, Biomacromolecules 11, 1736 (2009).

    Google Scholar 

  11. L. Lacerda, A. L. Praise, V. Fávere, M. C. M. Laranjeira, and H. K. Stulzer, Mater. Sci. Eng. C 39, 161 (2014).

    Article  CAS  Google Scholar 

  12. V. Pawar, H. Topkar, and R. Srivastava, Int. J. Biol. Macromol. 115, 1131 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. P. L. Ritger and N. A. Peppas, J. Control. Release 5 (1), 23 (1987).

    Article  CAS  Google Scholar 

  14. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1975).

    Google Scholar 

  15. S. V. Shilova, G. M. Mirgaleev, M. V. Volkova, A. Ya. Tret’yakova, and V. P. Barabanov, Vestn. Tekhnol. Un-Ta 24 (12), 56 (2021).

    Google Scholar 

  16. V. A. Kabanov, Russ. Chem. Rev. 74 (1), 3 (2005).

    Article  CAS  Google Scholar 

  17. E. I. Kulish, A. S. Shurshina, and S. V. Kolesov, Polym. Sci., Ser. A 56 (3), 289 (2014).

    Article  CAS  Google Scholar 

  18. B. Singh, N. Chauhan, Acta Biomater. 4 (5), 1244 (2008).

  19. A. B. Belevitin, E. V. Boiko, V. F. Danilichev, and V. N. Pavlyuchenko, Vestn. Ross. Voenno-Medits. Akad., No. 2 (26) 96 (2009).

  20. O. I. Kulapina, V. A. Karenko, and E. G. Kulapina, Izv. Sarat. Un-Ta. Nov. ser. Ser. Khimiya. Biologiya. Ekologiya 16 (2), 130 (2016).

    Google Scholar 

  21. R. Kh. Mudarisova, E. I. Kulish, R. M. Zinatullin, N. E. Tamindarova, S. V. Kolesov, S. N. Khunafin, and Y. B. Monakova, Rus. J. App. Chem. 79 (7), 1210 (2006).

    Article  CAS  Google Scholar 

  22. M. Tavakol, E. Vasheghani-Farahani, T. Dolatabadi-Farahani, and S. Hashemi-Najafabadi, Carbohydr. Polym. 77, 326 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using equipment of the Shared Research Center Nanotechnologies and Nanomaterials, Kazan National Research Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shilova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilova, S.V., Mirgaleev, G.M. & Barabanov, V.P. pH-Responsive Calcium Alginate Microspheres Modified with Chitosan for Immobilization of Antibiotic Cefotaxime. Polym. Sci. Ser. A 64, 447–455 (2022). https://doi.org/10.1134/S0965545X22700171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22700171

Navigation