Skip to main content
Log in

Thermodynamic Compatibility of Polyacrylamide with Agarose: The Effect of Polysaccharide Chain Stiffness

  • POLYMER BLENDS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The enthalpy, Gibbs free energy, and entropy of mixing of polyacrylamide with agarose have been determined using thermodynamic cycles based on microcalorimetry and isothermal equilibrium sorption data. The enthalpies of solution in water have been measured, and water sorption isotherms have been obtained for films of polyacrylamide, agarose, and their mixtures in different ratios. The sorption data have been processed used a sorption model that takes into account the effect of polysaccharide chain stiffness on the change in the chemical potential of water upon the formation of a solution during sorption. The model relationships are shown to be in good agreement with the experimental isotherms over the entire range of variation of the polymer volume fraction and the relative vapor pressure. It has been found that the enthalpy of mixing of polyacrylamide and agarose is negative over the entire range of compositions. Mixtures containing less than 50 wt % agarose are thermodynamically incompatible and are characterized by a positive Gibbs energy of mixing, whereas Gibbs energies are negative for mixtures containing more than 50% agarose. The calculated values of the entropy of mixing are negative in the entire range of agarose to polyacrylamide ratios, thereby indicating ordering in this polymer mixture. The results of studying the thermodynamic compatibility of polyacrylamide and agarose are compared with the swelling behavior and mechanical properties of hydrogels based on semi-interpenetrating networks of these polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. N. Sahiner and S. Demirci, J. Appl. Polym. Sci. 134 (21), 44854 (2017).

    Article  Google Scholar 

  2. Q. Chen, L. Zhu, L. Huang, H. Chen, K. Xu, Y. Tan, P. Wang, and J. Zheng, Macromolecules 47 (6), 2140 (2014).

    Article  CAS  Google Scholar 

  3. H. Xin, H. R. Brown, S. Naficy, and G. M. Spinks, J. Polym. Sci., Part B: Polym. Phys. 54 (1), 53 (2016).

    Article  CAS  Google Scholar 

  4. Z. Li, Y. Su, M. A. Haq, B. Xie, and D. Wang, Polymer 103, 146 (2016).

    Article  CAS  Google Scholar 

  5. Md. A. Haque, T. Kurokawa, and J. P. Gong, Polymer 53 (9), 1805 (2012).

  6. S.-B. Park, E. Lih, K.-S. Park, Y. K. Joung, and D. K. Han, Prog. Polym. Sci. 68, 77 (2017).

    Article  CAS  Google Scholar 

  7. Q. Chen, H. Chen, L. Zhu, and J. Zheng, Macromol. Chem. Phys. 217 (9), 1022 (2016).

    Article  CAS  Google Scholar 

  8. S. Tarashi, H. Nazockdast, and G. Sodeifian, Polymer 188, 122138 (2020).

    Article  CAS  Google Scholar 

  9. T. V. Terziyan, A. P. Safronov, and Yu. G. Belous, J. Polym. Sci., Part A: Polym. Chem. 57, 200 (2015).

    CAS  Google Scholar 

  10. L. V. Adamova, A. P. Safronov, T. V. Terziyan, P. A. Shabadrov, and A. V. Klyukina, J. Polym. Sci., Part A: Polym. Chem. 60 (2), 190 (2018).

    CAS  Google Scholar 

  11. R. N. Lichtenthaler, D. S. Abram, and J. M. Prausnitz, Can. J. Chem. 51, 3071 (1973).

    Article  CAS  Google Scholar 

  12. M. D. Donohue and J. M. Prausnitz, Can. J. Chem. 53, 1586 (1975).

    Article  CAS  Google Scholar 

  13. F. S. Mostafavi and D. Zaeimb, Int. J. Biol. Macromol. 159, 1165 (2020).

    Article  CAS  Google Scholar 

  14. G. U. Rani, A. K. Konreddy, and S. Mishra, Int. J. Biol. Macromol. 117, 902 (2018).

    Article  CAS  Google Scholar 

  15. N. Hamzavi, J.-Y. Dewavrin, A. D. Drozdov, and E. Birgersson, J. Polym. Sci., Part B: Polym. Phys. 55, 444 (2017).

    Article  CAS  Google Scholar 

  16. K. Peng, K. Yang, Y. Fan, A. Yasin, X. Hao, and H. Yang, Macromol. Chem. Phys. 218 (17), 1700170 (2017).

    Article  Google Scholar 

  17. A. I. Suvorova, I. S. Tyukova, A. P. Safronov, and L. V. Adamova, Macromolecular Compounds: Laboratory Works (Ural’skii Gos. Univ., Yekaterinburg, 2006).

    Google Scholar 

  18. C. Rochas and M. Lahaye, Carbohydr. Polym. 10 (4), 289 (1989).

    Article  CAS  Google Scholar 

  19. E. Calvet and H. Prat, Microcalorimetrie (Masson, Paris, 1956).

    Google Scholar 

  20. S. Arnott, A. Fulmer, W. E. Scott, I. C. Dea, R. Moorhouse, and D. A. Rees, J. Mol. Biol. 90 (2), 269 (1974).

    Article  CAS  Google Scholar 

  21. A. A. Tager, Physical Chemistry of Polymers (Nauchnyi Mir, Moscow, 2007).

    Google Scholar 

  22. A. P. Safronov and L. V. Adamova, Polymer 43 (9), 2653 (2002).

    Article  CAS  Google Scholar 

  23. A. P. Safronov and L. V. Adamova, Polym. Sci., Ser. A 44 (4), 408 (2002).

    Google Scholar 

  24. A. P. Safronov, L. V. Adamova, and G. V. Kurlyandskaya, J. Polym. Sci., Part A: Polym. Chem. 61 (1), 29 (2019).

    CAS  Google Scholar 

  25. P. J. Flory, Principles of Polymer Chemistry (Cornell Univ. Press, Ithaca, 1953).

    Google Scholar 

  26. N. A. Smirnova, Molecular Theories of Solutions (Khimiya, Moscow, 1987).

    Google Scholar 

  27. A. E. Chalykh, V. K. Gerasimov, and V. G. Chertkov, Vysokomol. Soedin., Ser. B 36 (12), 2077 (1994).

    CAS  Google Scholar 

  28. A. P. Safronov, A. I. Suvorova, I. S. Tyukova, and Y. A. Smirnova, J. Polym. Sci., Part B: Polym. Phys. 45 (18), 2603 (2007).

    Article  CAS  Google Scholar 

  29. G. P. Baeza, A.-C. Genix, J. Oberdisse, C. Degrandcourt, L. Petitjean, M. Couty, and J. Gummel, Macromolecules 46, 317 (2013).

    Article  CAS  Google Scholar 

  30. A.-J. Zhu and S. S. Sternstein, Compos. Sci. Technol. 63, 1113 (2003).

    Article  CAS  Google Scholar 

  31. J. Jancar, J. F. Douglas, F. W. Starr, S. K. Kumar, P. Cassagnau, A. J. Lesser, S. S. Sternstein, and M. J. Buehler, Polymer 51 (15), 3321 (2010).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-12-00031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Manas Kyzy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronov, A.P., Terziyan, T.V., Kyzy, A.M. et al. Thermodynamic Compatibility of Polyacrylamide with Agarose: The Effect of Polysaccharide Chain Stiffness. Polym. Sci. Ser. A 64, 53–62 (2022). https://doi.org/10.1134/S0965545X22010072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22010072

Navigation