Skip to main content
Log in

Nonwoven Materials Based on Electrospun Ultrathin Fibers of Poly(3-hydroxybutyrate) and Complex Tin Chloride–Porphyrin

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The effect of small additives (1–5%) of the complex tin chloride–tetraphenylporphyrin on the structure and properties of ultrathin fibers based on poly(3-hydroxybutyrate) is studied by differential scanning calorimetry, electronic paramagnetic resonance, and scanning electron microscopy. It is shown that introduction of the porphyrin complex into the polymer fibers causes a considerable increase in the melting enthalpy and molecular mobility and a decrease in the concentration of the probe radical in the amorphous regions of the polymer. The exposure of the polymer in an aqueous medium at 70°С leads to a sharp reduction in the melting enthalpy and probe radical concentration and an increase in molecular mobility in compositions containing 5% of the porphyrin complex. Upon annealing of the fibers at 140°C, the melting enthalpy and correlation time grow, while the concentration of the probe radical decreases. The structure of the fibers is compared with the structure of previously studied ultrathin fibers with additives of complexes of different stereoregularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. S. Jana, S. Maiti, and S. Jana, in Biopolymer-Based Composites: Drug Delivery and Biomedical Application, Ed. by S. Jana, S. Maiti, and S. Jana (Woodhead Publ. Elsevier Ltd., Kidlington, 2017), p. 1.

  2. A. K. Zykova, P. V. Pantyukhov, A. A. Popov, N. N. Kolesnikova, and T. V. Monakhova, J. Polym. Environ. 26, 1343 (2018).

    Article  CAS  Google Scholar 

  3. A. Sangroniz, J.-B. Zhu, X. Tang, A. Etxeberria, E. Y.‑X. Chen, and H. Sardon, Nat. Commun. 10 (3559), 1 (2019).

    Article  CAS  Google Scholar 

  4. A. Rosa, G. Ricciardi, and E. J. Baerends, Inorg. Chem. 44, 6609 (2005).

    Article  CAS  Google Scholar 

  5. P. C. Ray and J. Leszczynski, Chem. Phys. Lett. 419, 578 (2006).

    Article  CAS  Google Scholar 

  6. C. Li, J. Ly, and B. Lei, J. Phys. Chem. B 108, 9646 (2004).

    Article  CAS  Google Scholar 

  7. V. Balzani, A. Credi, and M. Venturi, Chem.-Eur. J. 14, 26 (2008).

    Article  CAS  Google Scholar 

  8. A. V. Bychkova, A. L. Iordanskii, and R. Y. Kosenko, Nanotechnol. Russ. 10, 325 (2015).

    Article  CAS  Google Scholar 

  9. S. G. Karpova, A. A. Ol’khov, N. G. Shilkina, P. M. Tyubaeva, A. A. Popov, and A. L. Iordanskii, Polym. Sc., Ser. A 59, 342 (2017).

    CAS  Google Scholar 

  10. S. G. Karpova, A. A. Ol’khov, N. G. Shilkina, A. A. Popov, A. G. Filatova, E. L. Kucherenko, and A. L. Iordanskii, Polym. Sci., Ser. A 59, 58 (2017).

    Article  CAS  Google Scholar 

  11. A. L. Iordanskii, A. A. Ol’khov, S. G. Karpova, E. L. Kucherenko, R. Y. Kosenko, S. Z. Rogovina, A. E. Chalykh, and A. A. Berlin, Polym. Sci., Ser. A 59, 352 (2017).

    Article  CAS  Google Scholar 

  12. S. G. Karpova, A. A. Ol’khov, A. L. Iordanskii, S. M. Lomakin, N. S. Shilkina, A. A. Popov, K. Z. Gumargalieva, and A. A. Berlin, Polym. Sci., Ser. A 58, 76 (2016).

    Article  CAS  Google Scholar 

  13. A. A. Olkhov, O. V. Staroverova, A. P. Bonartsev, I. I. Zharkova, E. D. Sklyanchuk, A. L. Iordanskii, S. Z. Rogovina, A. A. Berlin, and A. A. Ishchenko, Polym. Sci., Ser. D 8, 100 (2015).

    CAS  Google Scholar 

  14. S. G. Karpova, A. A. Olkhov, A. V. Bakirov, N. G. Shilkina, and A. A. Popov, Russ. J. Phys. Chem. B 12, 142 (2018).

    Article  CAS  Google Scholar 

  15. S. G. Karpova, A. A. Ol’khov, A. V. Krivandin, O. V. Shatalova, A. A. Popov, A. V. Lobanov, and A. L. Iordanskii, Polym. Sci., Ser. A 61, 70 (2019).

    Article  CAS  Google Scholar 

  16. S. G. Karpova, A. A. Ol’khov, A. B. Lobanov, A. A. Popov, and A. L. Iordanskii, Nanotechnol. Russ. 14, 132 (2019).

    Article  CAS  Google Scholar 

  17. M. E. Glazkova, T. A. Ageeva, O. I. Nikolaeva, Yu. V. Rumyantseva, and O. I. Koifman, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., No. 3, 104 (2011).

  18. D. A. Filimonov, O. V. Samoletov, M. I. Bazanov, A. S. Semeikin, and A. V. Petrov, Elektrokhim. Energ. 9, 91 (2009).

    CAS  Google Scholar 

  19. A. A. Ol’khov, O. V. Staroverova, M. A. Gol’dshtrakh, A. V. Khvatov, K. Z. Gumargalieva, and A. L. Iordanskii, Russ. J. Phys. Chem. B 10, 830 (2016).

    Article  Google Scholar 

  20. A. Amati, P. Cavigli, N. Demitri, and M. Natali, Inorg. Chem. 58, 4399 (2019).

    Article  CAS  Google Scholar 

  21. H. Kim, W. Kim, Y. Mackeyev, G.-S. Lee, H.-J. Kim, and T. Tachikawa, Environ. Sci. Technol. 46, 9606 (2012).

    Article  CAS  Google Scholar 

  22. H. Huang, S. Chauhan, J. Geng, Y. Qin, and D. F. Watson, Biomacromolecules 18, 562 (2017).

    Article  CAS  Google Scholar 

  23. L. Mintrop, J. Windisch, C. Gotzmann, R. Alberto, and B. Probst, J. Phys. Chem. B 119, 13698 (2015).

    Article  CAS  Google Scholar 

  24. C. D. Tran, S. Duri, and A. L. Harkins, J. Biomed. Mater. Res., Part A 101A, 2248 (2013).

    CAS  Google Scholar 

  25. Yu. N. Filatov, Electrospinning of Fibrous Materials (ESF-Process) (Neft’ i Gaz, Moscow, 1997) [in Russian].

  26. Z. Liang and J. H. Freed, J. Phys. Chem. B 103, 6384 (1999).

    Article  CAS  Google Scholar 

  27. V. P. Timofeev, A. Yu. Misharin, and Ya. V. Tkachev, Biophysics 56, article no. 407 (2011).

    Article  Google Scholar 

  28. A. M. Vasserman, A. L. Buchachenko, A. L. Kovarskii, and M. B. Neiman, Vysokomol. Soedin., Ser. A 10, 1930 (1968).

    CAS  Google Scholar 

  29. Z. D. Stephen, Handbook of Thermal Analysis and Calorimetry, Applications to Polymers and Plastics (Elsevier, Amsterdam; Boston; London, 2002), Vol. 3.

    Google Scholar 

  30. I. P. Dobrovol’skaya, I. Lebedeva, V. Yudin, P. V. Popryaduhin, P. V. Ivan’kova, and V. Yu. Elohovskiy, Polym. Sci., Ser. A 58, 246 (2016).

    Article  Google Scholar 

  31. Y. V. Tertyshnaya and L. S. Shibryaeva, Polym. Sci., Ser. B 55, 164 (2013).

    Article  CAS  Google Scholar 

  32. P. P. Kamaev, Candidate’s Dissertation in Chemistry (IKhF RAN im. N.N. Semenova, Moscow, 2001).

  33. E. L. Ivantsova, A. L. Iordanskii, S. Z. Rogovina, R. Yu. Kosenko, E. L. Ivantsova, and E. V. Prut, Dokl. Phys. Chem. 431, 60 (2010).

    Article  CAS  Google Scholar 

  34. S. G. Karpova, A. A. Ol’khov, S. N. Chvalun, P. M. Tyubaeva, A. A. Popov, and A. L. Iordanskii, Nanotechnol. Russ. 14, 367 (2019).

    Article  CAS  Google Scholar 

  35. A. N. Ozerin, Candidate’s Dissertation in Chemistry (Nauch.-Issled. Fiz.-Khim. Inst. im. L. Ya. Karpova, Moscow, 1977).

  36. S. G. Karpova, A. A. Popov, and G. E. Zaikov, Vysokomol. Soedin. 33, 931 (1991).

    CAS  Google Scholar 

  37. S. G. Karpova, A. L. Iordanskii, A. A. Popov, S. N. Chvalun, and A. A. Berlin, Russ. J. Phys. Chem. B 6, 72 (2012).

    Article  CAS  Google Scholar 

  38. S. G. Karpova, A. A. Ol’khov, P. M. Tyubaeva, N. G. Shilkina, A. A. Popov, and A. L. Iordanskii, Russ. J. Phys. Chem. B 13, 313 (2019).

    Article  CAS  Google Scholar 

  39. S. G. Karpova, A. A. Ol’khov, A. L. Iordanskii, S. M. Lomakin, N. S. Shilkina, A. A. Popov, and A. A. Berlin, Polym. Sci., Ser. A 58, 76 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this work, the crystallinity was measured by DSC on a DSC 204 F1 instrument (Netzsch, Germany) at the Shared Research Center New Materials and Technologies, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences.

We are grateful to A.V. Lobanov (Semenov Institute of Chemical Physics, Russian Academy of Sciences) for the provided metal complex SnCl2–TPP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Karpova.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpova, S.G., Ol’khov, A.A., Zhul’kina, A.L. et al. Nonwoven Materials Based on Electrospun Ultrathin Fibers of Poly(3-hydroxybutyrate) and Complex Tin Chloride–Porphyrin. Polym. Sci. Ser. A 63, 369–381 (2021). https://doi.org/10.1134/S0965545X21040040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X21040040

Navigation