Skip to main content
Log in

Construction and Functional Properties of Multifunctional Chitosan Hydrogel

  • POLYMER NETWORKS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract—

Hydrogel is a kind of new functional polymer material with application value and economic benefit. It has wide application in biomedical field because of its good biocompatibility and hydrophilicity.In this work, chitosan hydrogel was prepared by free radical graft copolymerization using natural biodegradable polymer chitosan as the carrier, temperature sensitive N-isopropylacrylamide (NIPAm) and pH sensitive 2‑acrylamido-2-methylpropane (AMPS) as monomers. The adsorption and drug release properties of chitosan hydrogel are discussed emphatically.The adsorption performance of chitosan hydrogel on copper ions showed that the temperature and the concentration of copper ions had influence on the adsorption. When the concentration of copper ions was 800 mg/L at 25°C, the equilibrium adsorption capacity was 225.8 mg/g, quasi-second order kinetic equation was suitable for describing the adsorption process. With the methylene blue as the drug model, the controlled release results showed that the temperature and the initial drug dosage had great effect on controlled release performance, and the cumulative release rate of 48 h was about 70%, which could achieve sustained release and controlled release to a certain extent.The experimental results also showed that the chitosan hydrogel can be completely degraded for about 20 days with excellent degradation performance. In conclusion, chitosan hydrogel has broad application prospects in drug controlled release, tissue engineering, environmental engineering and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. X. Li and X. L. Su, J. Mater. Chem. B 6, 4714 (2018).

    Article  CAS  Google Scholar 

  2. C. T. Tsao, F. M. Kievit, K. Wang, A. E. Erickson, R. G. Ellenbogen, and M. Zhang, Mol. Pharmaceutics 11, 2134 (2014).

    Article  CAS  Google Scholar 

  3. T. R. Hoare and D. S. Kohane, Polymer 49, 1993 (2008).

    Article  CAS  Google Scholar 

  4. P. Mukhopadhyay, K. Sarkar, S. Bhattacharya, A. Bhattacharyya, R. Mishra, and P. P. Kundu, Carbohydr. Polym. 112, 627 (2014).

    Article  CAS  Google Scholar 

  5. N. P. Birch, L. E. Barney, E. Pandres, S. R. Peyton, and J. D. Schiffman, Biomacromolecules 16, 1837 (2015).

    Article  CAS  Google Scholar 

  6. Y. M. Ma, D. X. Wei, and H. Yao, Biomacromolecules 17, 2680 (2016).

    Article  CAS  Google Scholar 

  7. J. A. Yang, H. Kim, K. Park, and S. K. Hahn, Soft Matter 7, 868 (2011).

    Article  CAS  Google Scholar 

  8. K. Y. Lee and D. J. Mooney, Chem. Rev. 101, 1869 (2001).

    Article  CAS  Google Scholar 

  9. E. Sokolovskaya, L. Barner, S. Bräse, and J. Lahann, Macromol. Rapid Commun. 35, 780 (2014).

    Article  CAS  Google Scholar 

  10. S. Perumal, R. Atchudan, D. H. Yoon, J. Joo, and I. W. Cheong, Ind. Eng. Chem. Res. 58, 9900 (2019).

    Article  CAS  Google Scholar 

  11. G. P. Chen, Y. Yu, X. W. Wu, and G. F. Wang, Adv. Funct. Mater. 2, 1386 (2018).

    Google Scholar 

  12. R. Jin, T. L. S. Moreira, P. J. Dijkstra, M. Karperien, C. A. van Blitterswijk, Z. Y. Zhong, and J. Feijen, Biomaterials 30, 2544 (2009).

    Article  CAS  Google Scholar 

  13. A. F. Martin, S. P. Facchi, H. D. M. Follmann, A. G. B. Pereira, A. F. Rubira, and E. C. Muniz, Int. J. Mol. Sci. 15, 20800 (2014).

    Article  Google Scholar 

  14. B. S. Yannic, G. Robert, and J. Olivier, Eur. J. Pharm. Biopharm. 68, 19 (2008).

    Article  Google Scholar 

  15. R. C. F. Cheung, T. B. Ng, J. H. Wong, and W. Y. Chan, Mar. Drugs 13, 5156 (2015).

    Article  CAS  Google Scholar 

  16. Y. H. Loo and C. A. E. Hauser, Biomed. Mater. 11, 1 (2016).

    Google Scholar 

  17. M. S. Benhabiles, R. Salah, H. Lounici, N. Drouiche, M. F. A. Goosen, and N. Mameri, Food Hydrocolloids 29, 48 (2012).

    Article  CAS  Google Scholar 

  18. J. Yang, Y. F. Wang, M. Li, H. Wu, T. Y. Zhen, L. Xiong, and Q. J. Sun, J. Agric. Food Chem. 67, 2894 (2019).

    Article  CAS  Google Scholar 

  19. C. Liu, E. Thormann, P. M. Claesson, and E. Tyrode, Langmuir 30, 8878 (2014).

    Article  CAS  Google Scholar 

  20. N. Bhattarai, J. Gunn, and M. Zhang, Adv. Drug Delivery Rev. 62, 83 (2010).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Scientific Research Program Funded by Shaanxi Provincial Science and Technology Department (no. 2020GY-322), Xi’an Weiyang District Science and Technology Plan Project (no. 201931), Training Program of Innovation and Entrepreneurship for Undergraduates (no. 2018078), the Scientific Research Program Funded by Shaanxi Provincial Science and Technology Department (no. 2020GY-321) and the project of Young Talent fund of University Association for Science and Technology in Shaanxi (no. 20180606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei Liang, Zhao, J. & Deng, C. Construction and Functional Properties of Multifunctional Chitosan Hydrogel. Polym. Sci. Ser. A 62, 494–501 (2020). https://doi.org/10.1134/S0965545X20050120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X20050120

Navigation