Skip to main content
Log in

Phase Diagram of Rod-Coil Diblock Copolymers: Dissipative Particle Dynamics Simulation

  • THEORY AND SIMULATION
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Using dissipative particle dynamics, a refined phase diagram of the rod-coil diblock copolymer is constructed in coordinates copolymer composition–repulsion parameter of different types of units. The diagram describes the microphase separation of copolymer blocks and the orientational ordering of rigid blocks. Simulation of rodlike blocks as rigid bodies makes it possible to reduce computational costs, increase the size of the simulation cell to 32 × 32 × 32 and the total length of the copolymer chain N to 20, to vary the composition of the copolymer chain with a smaller step (up to 0.05), and to investigate the behavior of systems with high degrees of segregation of blocks (up to χN ≈ 250). Owing to this optimization, the ordering of rigid blocks not only in the lamellar but also in bicontinuous morphology can be observed for the first time. It is also shown that the zigzag and bilayer lamellas described not only in numerical but also in laboratory experiments are metastable and disappear with an increase in the size of the simulated system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. He, F. Qiu, and Z. Lin, J. Mater. Chem. 21, 17039 (2011).

    Article  CAS  Google Scholar 

  2. Y. Lee and E. D. Gomez, Macromolecules 48, 7385 (2015).

    Article  CAS  Google Scholar 

  3. M. Lee, B.-K. Cho, H. Kim, and W.-C. Zin, Angew. Chem., Int. Ed. 37, 638 (1998).

    Article  CAS  Google Scholar 

  4. M. Lee, B.-K. Cho, H. Kim, J.-Y. Yoon, and W.‑C. Zin, J. Am. Chem. Soc. 120, 9168 (1998).

    Article  CAS  Google Scholar 

  5. J.-H. Ryu and M. Lee, Struct. Bonding (Berlin, Germ.) 128, 63 (2008).

  6. B. D. Olsen and R. A. Segalman, Macromolecules 39, 7078 (2006).

    Article  CAS  Google Scholar 

  7. L. R. N. Sary, C. Brochon, G. Hadziioannou, J. Ruokolainen, and R. Mazzenga, Macromolecules 40, 6990 (2007).

    Article  CAS  Google Scholar 

  8. L. H. Radzilowski, J. L. Wu, and S. I. Stupp, Macromolecules 26, 879 (1993).

    Article  CAS  Google Scholar 

  9. L. H. Radzilowski and S. I. Stupp, Macromolecules 27, 7747 (1994).

    Article  CAS  Google Scholar 

  10. L. H. Radzilowski, B. O. Carragher, and S. I. Stupp, Macromolecules 30, 2110 (1997).

    Article  CAS  Google Scholar 

  11. J. T. Chen, E. L. Thomas, C. K. Ober, and S. S. Hwang, Macromolecules 28, 1688 (1995).

    Article  CAS  Google Scholar 

  12. J. T. Chen, E. L. Thomas, C. K. Ober, and G. O. Mao, Science 273 (5273), 343 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. J.-H. Ryu, N.-K. Oh, W.-C. Zin, and M. J. Lee, J. Am. Chem. Soc. 126, 3551 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. S. A. Jenekhe and X. L. Chen, Science 279 (5358), 1903 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. M. Lee, B.-K. Cho, K. J. Ihn, W.-K. Lee, N.-K. Oh, and W.-C. Zin, J. Am. Chem. Soc. 123, 4647 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. M. A. Horsch, Z. L. Zhang, and S. C. Glotzer, Phys. Rev. Lett. 95, 056105 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. M. A. Horsch, Z. L. Zhang, and S. C. Glotzer, J. Chem. Phys. 125, 184903 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. M. A. Horsch, Z. L. Zhang, and S. C. Glotzer, Soft Matter 6, 945 (2010).

    Article  CAS  Google Scholar 

  19. J. Z. Chen, C. X. Zhang, Z. Y. Sun, Y. S. Zheng, and L. J. An, J. Chem. Phys. 124, 104907 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. J. Z. Chen, C. X. Zhang, Z. Y. Sun, L. J. An, and Z. J. Tong, J. Chem. Phys. 127, 024105 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. J. Z. Chen, Z. Y. Sun, C. X. Zhang, L. J. An, and Z. J. Tong, J. Chem. Phys. 128, 074904 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. W. D. Song, P. Tang, F. Qiu, Y. L. Yang, and A. C. Shi, Soft Matter 7, 929 (2011).

    Article  CAS  Google Scholar 

  23. A. AlSunaidi, W. K. den Otter, and J. H. R. Clarke, Philos. Trans. R. Soc. London 362 (1821), 1773 (2004).

  24. A. AlSunaidi, W. K. den Otter, and J. H. R. Clarke, J. Chem. Phys. 130, 124910 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. A. Halperin, Macromolecules 23, 2724 (1990).

    Article  CAS  Google Scholar 

  26. D. R. M. Williams and G. H. Fredrickson, Macromolecules 25, 3561 (1992).

    Article  CAS  Google Scholar 

  27. M. Müller and M. Schick, Macromolecules 29, 8900 (1996).

    Article  Google Scholar 

  28. M. W. Matsen and C. Barrett, J. Chem. Phys. 109, 4108 (1998).

    Article  CAS  Google Scholar 

  29. V. Pryamitsyn and V. Ganesan, J. Chem. Phys. 120, 5824 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. M. Shah, V. Pryamitsyn, and V. Ganesan, Macromolecules 41, 218 (2008).

    Article  CAS  Google Scholar 

  31. Yu. A. Kriksin and P. G. Khalatur, Macromol. Theory Simul. 21, 382 (2012).

    Article  CAS  Google Scholar 

  32. L. He, Z. Chen, R. Zhang, L. Zhang, and Zh. Jiang, J. Chem. Phys. 138, 094907 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. L.-T. Yan and X.-M. Xie, Prog. Polym. Sci. 38, 369 (2013).

    Article  CAS  Google Scholar 

  34. L. He, L. Zhang, A. Xia, and H. Liang, J. Chem. Phys. 130, 144907 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. L. He, L. Zhang, H. Chen, and H. Liang, Polymer 50, 3403 (2009).

    Article  CAS  Google Scholar 

  36. L. He, L. Zhang, and H. Liang, Polymer 51, 3303 (2010).

    Article  CAS  Google Scholar 

  37. A. Chai, D. Zhang, Y. Jiang, L. He, and L. Zhang, J. Chem. Phys. 139, 104901 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Z. Zhang, T. Li, and E. Nies, Macromolecules 47, 5416 (2014).

    Article  CAS  Google Scholar 

  39. R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).

    Article  CAS  Google Scholar 

  40. S.-H. Chou, H.-K. Tsao, and Y.-J. Sheng, J. Chem. Phys. 134, 034904 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. S.-H. Chou, D. T. Wu, H.-K. Tsao, and Y.-J. Sheng, Soft Matter 7, 9119 (2011).

    Article  CAS  Google Scholar 

  42. O. Liba, D. Kauzlaric, Z. R. Abrams, Y. Hanein, A. Greiner, and J. G. Korvink, Mol. Simul. 34, 737 (2008).

    Article  CAS  Google Scholar 

  43. Ch. Zhou, S.-K. Luo, Y. Sun, Y. Zhou, and W. Qian, J. Appl. Polym. Sci. 133, 44098 (2016).

    Google Scholar 

  44. Y. K. Levine, A. E. Gomes, A. F. Martins, and A. Polimeno, J. Chem. Phys. 122, 144902 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Z. Zhang and H. Guo, J. Chem. Phys. 133, 144911 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. X. Li, F. Huang, T. Jiang, X. He, S. Lin, and J. Lin, RSC Adv. 5, 1514 (2015).

  47. T. F. Miller, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns, and G. J. Martyna, J. Chem. Phys. 116, 8649 (2002).

    Article  CAS  Google Scholar 

  48. A. Polimeno, A. Gomes, and A. F. Martins, in Computer Simulation of Liquid Crystals and Polymers, NATO Science Series II, Ed. by P. Pasini, C. Zannoni, and S. Žumer (Kluwer, Dordrecht, 2005), Vol. 177.

    Google Scholar 

  49. A. V. Berezkin, Y. V. Kudryavtsev, M. V. Gorkunov, and M. A. Osipov, J. Chem. Phys. 146, 144902 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. A. A. Gavrilov, Y. V. Kudryavtsev, and A. V. Chertovich, J. Chem. Phys. 139, 224901 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

A.V. Berezkin is grateful for the opportunity to use the equipment of the Center for Collective Use of Superhigh-Performance Computing Resources, Lomonosov Moscow State University.

Funding

This work was supported by the Russian Science Foundation (project 16-13-10280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Berezkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezkin, A.V., Kudryavtsev, Y.V. & Osipov, M.A. Phase Diagram of Rod-Coil Diblock Copolymers: Dissipative Particle Dynamics Simulation. Polym. Sci. Ser. A 61, 514–519 (2019). https://doi.org/10.1134/S0965545X19040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19040023

Navigation