Skip to main content
Log in

On the Stability of Aqueous Nanodispersions of Polyelectrolyte Complexes Based on Chitosan and N-Succinyl-Chitosan

  • NATURAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

From the point of view of aggregative stability, aqueous dispersions of particles of polyelectrolyte complexes based on chitosan hydrochloride and sodium salt of N-succinyl-chitosan were obtained and characterized. It is shown that, in the entire range of experimental conditions considered, these polyelectrolytes form an aggregately unstable disperse system. At the same time, the relative aggregative stability of the systems (the time before the formation of a precipitate of the polyelectrolyte complex) increases with an increase in the molecular weights of the polymers, with an increase in the molar ratio of the components, and with an increase in the concentration of polymers in the solution and reaches 30 days. The average particle size in the region of the relative aggregative stability of dispersed systems is 100–380 nm, which is promising for their use as lysed drug carriers for their targeted transport in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. M. A. Krayukhina, N. A. Samoilova, and I. A. Yamskov, Russ. Chem. Rev. 77, 799 (2008).

    Article  CAS  Google Scholar 

  2. V. A. Izumrudov, I. F. Volkova, E. S. Grigoryan, and M. Yu. Gorshkova, Polym. Sci., Ser. A 53, 281 (2011).

    Article  CAS  Google Scholar 

  3. M. Ishihara, H. Hattori, and S. Nakamura, Int. J. Pharma Bio Sci. 6, 162 (2015).

    CAS  Google Scholar 

  4. Q. Yuan, J. Shah, S. Hein, and R. D. K. Misra, Acta Biomater. 6, 1140 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. J. Yang, S. Han, H. Zheng, H. Dong, J. Liu, Carbohydr. Polym. 123, 53 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. A. Grenha, J. Drug Targeting 20, 291 (2012).

    Article  CAS  Google Scholar 

  7. J. Venkatesan, S. Anil, S.-K. Kim, and M. S. Shim, Polymers 8 (2), 30 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  8. X. Z. Shu and K. J. Zhu, J. Microencapsulation 18, 237 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. N. Lia, C. Zhuang, M. Wang, X. Sun, S. Nie, and W. Pan, Int. J. Pharm. 379, 131 (2009).

    Article  CAS  Google Scholar 

  10. A. A. Gubaidullina, G. I. Smagina, A. I. Melent’ev, and M. M. Alsynbaev, Biotekhnologiya, No. 5, 45 (2010).

  11. N. G. Balabushevich, V. A. Izumrudov, and N. I. Larionova, Polym. Sci., Ser. A 54, 540 (2012).

    Article  CAS  Google Scholar 

  12. E. A. Kirzhanova, M. A. Pechenkin, N. G. Balabushevich, and N. G. Balabushevich, Moscow Univ. Chem. Bull. (Engl. Transl.) 71, 127 (2016).

  13. R. Guo, L. Chen, and S. Cai, J. Mater. Sci.: Mater. Med. 24, 2093 (2013).

    CAS  Google Scholar 

  14. M. Khorram, M. Samimi, A. Samimi, and H. Moghadam, J. Appl. Polym. Sci. 132, 2093 (2015).

    Article  CAS  Google Scholar 

  15. A. Skorik, A. A. Golyshev, A. S. Kritchenkov, E. R. Gasilova, D. N. Poshina, A. J. Sivaram, and R. Jayakumar, Carbohydr. Polym. 162, 49 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Y. Yang, S. Wang, Y. Wang, X. Wang, Q. Wang, and M. Chen, Biotechnol. Adv. 32, 1301 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. K. Barck and M. F. Butler, J. Appl. Polym. Sci. 98, 1581 (2005).

    Article  CAS  Google Scholar 

  18. S. Boddohi, N. Moore, P. A. Johnson, and M. J. Kipper, Biomacromolecules 10, 1402 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. A. Bernkop-Schnurch and S. Dunnhautpt, Eur. J. Pharm. Biopharm. 81, 463 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. M. S. Gurina, R. R. Vil’danova, L. A. Badykova, N. M. Vlasova, and S. V. Kolesov, Russ. J. Appl. Chem. 90, 219 (2017).

    Article  CAS  Google Scholar 

  21. S. B. Patil and K. K. Sawant, Colloids Surf., B 84, 384 (2011).

    Article  CAS  Google Scholar 

  22. A. Rafiee, M. H. A. Taraneh Gazori, and F. Riazi-rad, Asian Pac. J. Trop. Dis. 4, 372 (2014).

    Article  CAS  Google Scholar 

  23. A. B. Zezin and V. A. Kabanov, Rus. Chem. Rev. 51, 833 (1982).

    Article  Google Scholar 

  24. Y. Kato, H. Onishi, and Y. Machida, Biomaterials 21, 1579 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. A. A. Panevin, A. A. Golyshev, Y. A. Skorik, S. G. Zhuravskii, and D. L. Sonin, Pharm. Chem. J. 50, 711 (2017).

    Article  CAS  Google Scholar 

  26. B. C. Dash, G. Rethore, M. Monaghan, K. Fitzgerald, W. Gallagher, and A. Pandi, Biomaterials 31, 8188 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Y. Song, H. Onishi, and T. Nagai, Int. J. Pharm. 98, 121 (1993).

    Article  CAS  Google Scholar 

  28. M. Izume, Chitin Chitosan Res. 4, 12 (1998).

    CAS  Google Scholar 

  29. K. Kamiyama, H. Onishi, and Y. Machida, Biol. Pharm. Bull. 22, 179 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Y. A. Skorik, A. S. Kritchenkov, Y. E. Moskalenko, A. A. Golyshev, S. V. Raik, A. K. Whaley, L. V. Vasina, and D. L. Sonin, Carbohydr. Polym. 166, 166 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. M. Sato, H. Onishi, J. Takahara, Y. Machida, and T. Nagai, Biol. Pharm. Bull 19, 1170 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Y. Song, H. Onishi, Y. Machida, and T. Nagai, J. Controlled Release 42, 93 (1996).

    Article  CAS  Google Scholar 

  33. Y. A. Skorik, A. A. Golyshev, A. S. Kritchenkov, E. R. Gasilova, D. N. Poshina, A. J. Sivaram, and R. Jayakumar, Carbohydr. Polym. 162, 49 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. N. I. Kupreev, D. V. Bykovskii, and V. A. Kuznetsov, RF Patent No. 2417088 (2011).

  35. S. V. Nemtsev, V. M. Bykova, E. A. Ezhova, and S. A. Lopatin, in Proceedings of VIII International Conference “Modern Perspectives in Investigation of Chitin and Chitosan”, Moscow, Russia, 2006 (VNIRO, Moscow, 2006), p. 109.

  36. Yu. A. Kuchina, N. V. Dolgopyatova, V. Yu. Novikov, V. A. Sagaidachnyi, and N. N. Morozov, Vestn. MGTU 15, 107 (2012).

    Google Scholar 

  37. A. I. Gamzazade, V. M. Slimak, A. M. Skljar, E. V. Stykova, S.-S. A. Pavlova, and S. V. Rogozin, Acta Polym. 36, 420 (1985).

    Article  CAS  Google Scholar 

  38. L. A. Badykova, R. Kh. Mudarisova, I. M. Borisov, and M. S. Gurina, Russ. J. Appl. Chem. 89, 1126 (2016).

    Article  CAS  Google Scholar 

  39. E. I. Kulish, V. V. Chernova, V. P. Volodina, and S. V. Kolesov, Polym. Sci., Ser. A 57, 508 (2015).

    Article  CAS  Google Scholar 

  40. A. V. Dobrynin, M. Rubinshtein, and R. H. Colby, Macromolecules 28, 1859 (1995).

    Article  CAS  Google Scholar 

  41. M. Muthukumar, J. Chem. Phys. 107, 2619 (1997).

    Article  CAS  Google Scholar 

  42. M. V. Bazunova, D. R. Valiev, V. V. Chernova, and E. I. Kulish, Polym. Sci., Ser. A 57, 675 (2015).

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed in the Institute of Chemistry UFRC RAS within the State task for 2017–2019 (AAAA-A17-117011910026-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kh. Mudarisova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesov, S.V., Gurina, M.S. & Mudarisova, R.K. On the Stability of Aqueous Nanodispersions of Polyelectrolyte Complexes Based on Chitosan and N-Succinyl-Chitosan. Polym. Sci. Ser. A 61, 253–259 (2019). https://doi.org/10.1134/S0965545X19030076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19030076

Navigation