Skip to main content
Log in

Core-shell Nanofibers of Silk Fibroin/Polycaprolactone-Clindamycin: Study on Nanofibers Structure and Controlled Release Behavior

  • MEDICAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Biocompatible nanofibers with core-shell structures based on natural polymers such as silk fibroin have multiple applications as tissue engineering scaffolds and drug delivery systems. In this study, core-shell nanofibers composed of silk fibroin as shell and blends of clindamycin and polycaprolactone as core was fabricated using coaxial electrospinning technique. The effects of variation in concentration of core and shell polymer solutions, electrical conductivity and viscosity of solutions on the final morphology, average diameter of nanofibers and release behavior of clindamycin were studied. The fabricated nanofibers and their drug release behaviors were evaluated using Fourier transform infrared spectroscopy, ultraviolet spectroscopy, scanning and transmission electron microscope techniques. The results showed that concentration of shell solution have more effect on the final average diameter of core-shell nanofiber in compare to core solution. It is concluded that as the concentration of both polycaprolactone in the core and silk fibroin in the shell increased, the amount of released clindamycin from fabricated core-shell nanofibers showed decreasing trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. S. Agarwal, J. H. Wendorff, and A. Greiner, Polymer 49, 5603 (2008).

    Article  CAS  Google Scholar 

  2. Y. Y. Yanga, M. Zhanga, Z. P. Liub, K. Wanga, and D. G. Yu, Appl. Surf. Sci. 434, 1040 (2018).

    Article  CAS  Google Scholar 

  3. X. Y. Li, Z. B. Zheng, D. G. Yu, X. K. Liu, Y. L. Qu, and H. L. Li, Cellulose 24, 5551 (2017).

    Article  CAS  Google Scholar 

  4. S. Agarwal and S. Jiang, Nanofibers and Electrospinning in Encyclopedia of Polymeric Nanomaterials (Springer, Berlin Heidelberg, 2015).

    Google Scholar 

  5. R. A. Perez and H. Won Kim, Acta Biomater. 21, 2 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. B. Sun, B. Duan, and X. Yuan, J. Appl. Polym. Sci. 102, 39 (2006).

    Article  CAS  Google Scholar 

  7. N. Zhang, R. Qiao, J. Su, J. Yan, Z. Xie, Y. Qiao, X. Wang, and J. Zhong, Small 13, 1604239 (2017).

    Google Scholar 

  8. A. Vaseashta, “Nanostructured Materials Based Next Generation Devices and Sensors,” in Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology, Ed. by A. K. Vaseashta, D. Dimova-Malinovska, and J. M. Marshall (Springer, the Netherlands, 2005).

    Book  Google Scholar 

  9. Z. Sun, E. Zussman, A.L. Yarin, and J. H. Wendorff, Adv. Mater. 15, 1929 (2003).

    Article  CAS  Google Scholar 

  10. D. H. Choi, C. H. Park, I. H. Kim, H. J. Chun, K. Park, and D. K. Han, J. Controlled Release 147, 193 (2010).

    Article  CAS  Google Scholar 

  11. Y. Xua, J. J. Lia, D.-G. Yua, G. R. Williams, J. H. Yanga, and X. Wanga, Eur. J. Pharm. Sci. 106, 422 (2017).

    Article  CAS  Google Scholar 

  12. Y. Z. Zhang., J. Venugopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, Biomacromolecules 6, 2583 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Y. Hang, Y. Zhang, Y. Jin, H. Shao, and X. Hu, Int. J. Biol. Macromol. 51, 980 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Y. Xia, X. Lu, and H. Zhu, Compos. Sci. Technol. 77, 37 (2013).

    Article  CAS  Google Scholar 

  15. M. Maleki, M. Amani-Tehran, M. Latifi, and S. Mathur, Comput. Methods Programs Bio. 113, 92 (2014).

    Article  Google Scholar 

  16. A. Repanas and B. Glasmacher, J. Drug Delivery Sci. Technol. 29, 132 (2015).

    Article  CAS  Google Scholar 

  17. W. Shao, J. He, F. Sang, B. Ding, L. Chen, S. Cui, K. Li, Q. Han, and W. Tan, Mater. Sci. Eng., C 58, 342 (2016).

    Article  CAS  Google Scholar 

  18. M. Mori, P. V. Almeida, M. Cola, G. Anselmi, E. Makila, A. Correia, J. Salonen, J. Hirvonen, C. Caramella, and H. A. Santos, Eur. J. Pharm. Biopharm. 88, 635 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. M. G. Fouda, R. Wittke, D. Knittel, and E. Schollmeyer, Int. J. Diabetes Mellitus 1, 61 (2009).

    Article  Google Scholar 

  20. A. Mokhtarzadeh, A. Alibakhshi, M. Hejazi, and J. E. N. Dolatabadi, Trends Anal. Chem. 82, 367 (2016).

    Article  CAS  Google Scholar 

  21. A. L. Yarin, S. Koombhongse, and D. H. Renekera, J. Appl. Phys. 90, 4836 (2001).

    Article  CAS  Google Scholar 

  22. S. C. Kundu, Silk Biomaterials for Tissue Engineering and Regenerative Medicine (Woodhead Publishing, UK, 2014).

    Google Scholar 

  23. X. Zhang, M. R. Reagan, and D. L. Kaplan, Adv. Drug Delivery Rev. 61, 988 (2009).

    Article  CAS  Google Scholar 

  24. N. Rahimi Tanha and M. Nouri, J. Ind. Text. 48, 884 (2018). doi 10.1177/1528083717747334

    Article  CAS  Google Scholar 

  25. M. Fazley Elahi, W. Lu, G. Guoping, and F. Khan, J. Bioeng. Biomed. Sci. 3, 121 (2013).

    Google Scholar 

  26. C. L. He, Z. M. Huang, X. J. Han, L. Liu, H. S. Zhang, and L. S. Chen, J. Macromol. Sci., Part B: Phys. 45, 515 (2006).

    Article  CAS  Google Scholar 

  27. M. A. De Moraes, G. M. Nogueira, R. F. Weska, and M. M. Beppu, Polymers 2, 719 (2010).

    Article  CAS  Google Scholar 

  28. T. Elzein, M. N. Eddine, C. Delaite, S. Bistac, and P. Dumas, J. Colloid Interface Sci. 273, 381 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. A. I. Mohamed and A. M. E. Abd-Motagaly, Pharmaceutics 9, 7 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  30. J. Siepman and F. Siepman, J. Controlled Release 161, 351 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Nouri.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadia Rahimi Tanha, Mahdi Nouri Core-shell Nanofibers of Silk Fibroin/Polycaprolactone-Clindamycin: Study on Nanofibers Structure and Controlled Release Behavior. Polym. Sci. Ser. A 61, 85–95 (2019). https://doi.org/10.1134/S0965545X19010085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19010085

Navigation