Skip to main content
Log in

Theoretical and experimental studies of ion imprinted polymer for nitrate detection

  • Structure and Properties
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Molecular imprinting is an approach to synthesize receptors with specific molecular recognition properties. A computational method was carried out to study interaction between template and monomer in prepolymerization mixture. The functional monomer and template complexes were optimized, at the minimum energy confirmation using Austin Model 1 semi empirical method within Restricted Hartree Fock formalism. The theoretical results showed that allylthiourea (functional monomer) has the largest interaction energy towards template (sodium nitrate) with the mole ratio of 4 : 1; functional monomer : template. The resulting polymers were characterized using Fourier Transform infrared spectroscopy, thermogravimetry analysis and field emission scanning electron microscopy. Rebinding experiments were carried out to evaluate binding capacity of the polymer. The adsorption data of ion imprinted polymer (IIP) were fitted with Langmuir-Freundlich isotherm model. Pseudo-second order kinetic model was used to describe the kinetic adsorption behavior of IIP. The experimental binding result showed good agreement with theoretical computation and the IIP was further used for nitrate ion detection. The results of membrane optimization indicated that the sensor, which composed of 30% polyvinylchloride, 60% nitrophenyl octyl ether as a plasticizer, 2% sodium tetraphenyl borate, and 10% IIP as ionophore exhibited an almost Nernstian slope with the limit of detection 3.9 × 10-6 M. The fabricated sensor had shown good potential in nitrate detection with wide linear range, low limit of detection and found to have good selectivity towards nitrate ion over other anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Wu, Microchim. Acta 176 (1–2), 23 (2011).

    Google Scholar 

  2. Smart Sensors for Real-Time Water Quality Monitoring SE-7, Ed. by S. C. Mukhopadhyay and A. Mason (Springer, Berlin, 2013), Vol. 4, pp. 149–169.

  3. A. S. Watts, V. G. Gavalas, A. Cammers, P. S. Andrada, M. Alajarín, and L. G. Bachas, Sens. Actuators, B 121 (1), 200 (2007).

    Article  CAS  Google Scholar 

  4. P. D. Beer and S. R. Bayly, Top. Curr. Chem. 255, 125 (2005).

    CAS  Google Scholar 

  5. B. Schazmann and D. Diamond, New J. Chem. 31, 587 (2007).

    Article  CAS  Google Scholar 

  6. M. Arunachalam and P. Ghosh, Indian J. Chem. 50A, 1343 (2011).

    CAS  Google Scholar 

  7. F. Kivlehan, W. J. Mace, H. A. Moynihan, and D. W. M. Arrigan, Anal. Chim. Acta 585 (1), 154 (2007).

    Article  CAS  Google Scholar 

  8. H. Yan and K. H. Row, Int. J. Mol. Sci. 7 (5), 155 (2006).

    Article  CAS  Google Scholar 

  9. M. A. Abu-dalo, A. A. Salam, and N. S. Nassory, Int. J. Electrochem. Sci. 10, 6780 (2015).

    CAS  Google Scholar 

  10. T. Alizadeh, M. Rashedi, Y. Hanifehpour, and S. W. Joo, Electrochim. Acta 178, 877 (2015).

    Article  CAS  Google Scholar 

  11. S. Ahmad, R. Ivari, A. Darroudi, M. Hossein, A. Zavar, G. Zohuri, and N. Ashraf, Arabian J. Chem. (2013). doi 10.1016/j.arabjc.2012.12.021

    Google Scholar 

  12. L. F. Capitán-Vallvey, E. Arroyo-Guerrero, M. D. Fernández-Ramos, and F. Santoyo-Gonzalez, Anal. Chem. 77 (14), 4459 (2005).

    Article  Google Scholar 

  13. I. Tahir, M. N. Ahmad, and A. K. M. S. Islam, in Proceedings of “The 2nd International Malaysia-Ireland Joint Symposium on Engineering, Science and Business (IMiEJS)”, Kuala Lumpur, Malaysia, 2012 (Kuala Lumpur, Malaysia, 2012), pp. 1160–1168.

    Google Scholar 

  14. V. Gvozdi, V. Butorac, and V. Simeon, Croat. Chem. Acta 82 (2), 553 (2009).

    Google Scholar 

  15. P. Luliński, M. Dana, and D. Maciejewska, Polym. Int. 61 (4), 631 (2012).

    Article  Google Scholar 

  16. K. K. Tadi and R. V Motghare, Int. J. Electrochem. Sci. 8, 3197 (2013).

    CAS  Google Scholar 

  17. R. Herges, A. Dikmans, U. Jana, F. Kohler, P. G. Jones, I. Dix, T. Fricke, and B. König, Eur. J. Org. Chem. 17, 3004 (2002).

    Article  Google Scholar 

  18. M. S. Khan, P. S. Wate, and R. J. Krupadam, J. Mol. Model. 18 (5), 1969 (2012).

    Article  CAS  Google Scholar 

  19. L. A. Barros. R. Custodio, and R. Susanne, J. Braz. Chem. Soc. 27 (12), 2300 (2016).

    CAS  Google Scholar 

  20. N. A. Yusof, S. K. A. Rahman, M. Z. Hussein, and N. A. Ibrahim, Polymers (Basel) 5 (4), 1215 (2013).

    Article  Google Scholar 

  21. S. Sadeghi and M. Jahani, Food Chem. 141 (2), 1242 (2013).

    Article  CAS  Google Scholar 

  22. A. Lagha, Open Chem. Biomed. Methods J. 4 (1), 7 (2011).

    Article  CAS  Google Scholar 

  23. R. J. Umpleby, S. C. Baxter, Y. Chen, R. N. Shah, and K. D. Shimizu, Anal. Chem. 73 (19), 4584 (2001).

    Article  CAS  Google Scholar 

  24. X. Kan, Q. Zhao, Z. Zhang, Z. Wang, and J.-J. Zhu, Talanta 75 (1), 22 (2008).

    Article  CAS  Google Scholar 

  25. M. Ahamed, X. Y. Mbianda, A. F. Mulaba-Bafubiandi, and L. Marjanovic, React. Funct. Polym. 73 (3), 474 (2013).

    Article  CAS  Google Scholar 

  26. N. T. Tavengwa, MSc Thesis (University of Witwatersrand, Johannesburg, 2013).

    Google Scholar 

  27. V. E. Pakade, PhD Thesis (University of Witwatersrand, Johannesburg, 2012).

    Google Scholar 

  28. T. A. D. Patko, Understanding Ion Selective Sensors (Available from Advanced Sensor Technologies, Inc., Orange, CA, 2009), pp. 1–52.

    Google Scholar 

  29. M. He and H. Yang, Chem. Res. Chin. Univ. 28 (6) 957 (2012).

    CAS  Google Scholar 

  30. M. M. Ardakani, A. Dastanpour, and M. Salavati-Niasari, J. Electroanal. Chem. 568 (1–2), 1 (2004).

    Article  CAS  Google Scholar 

  31. R. P. Buck and E. Lindner, Pure Appl. Chem. 66 (12), 2527 (1994).

  32. T. Masadome, K. Nakamura, D. Iijima, O. Horiuchi, B. Tossanaitada, S. Wakida, and T. Imato, Anal. Sci. 26 (4), 417 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noorhidayah Ishak.

Additional information

The article is published in the original.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishak, N., Ahmad, M.N., Nasir, A.M. et al. Theoretical and experimental studies of ion imprinted polymer for nitrate detection. Polym. Sci. Ser. A 59, 649–659 (2017). https://doi.org/10.1134/S0965545X17050066

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X17050066

Navigation