Skip to main content
Log in

Physicochemical properties of multicomponent polyhydroxyalkanoates: Novel aspects

  • Natural Polymers
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The physicochemical properties such as the degree of crystallinity and temperature and molecularmass characteristics of a number of polyhydroxyalkanoates of various chemical composition synthesized on a complex carbon substrate by bacteria Cupriavidus eutrophus В10646 have been investigated. Two-, three-, and four-component copolymer samples have different sets and ratios of monomers with various lengths of carbon chains: 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB), 3-hydroxyvalerate (3HV), 3-hydroxyhexanoate (3HH), 3-hydroxy-4-methyl valerate (3H4MV), and diethylene glycol (DEG). It has been shown that weight-average molar mass М w and polydispersity vary in a wide range with no correlation existing with the composition of copolymer polyhydroxyalkanoates and that thermal stability is preserved in the temperature interval between the melting temperature and the thermal degradation temperature from 100 to 120–140°С. The composition and ratio of monomers most notably affect the degree of crystallinity of polyhydroxyalkanoates. Significant differences between the degrees of crystallinity of three- and four-component polyhydroxyalkanoates have been found for the first time. The degree of crystallinity for copolymers P(3HB/3HV/4HB) is 9–22%, and the degree of crystallinity for copolymers P(3HB/3HV/3HH) and P(3HB/3GV/3H4MV) is 41–63%; this value is close to the degree of crystallinity for diblock copolymers P(3HB)/DEG, which is 56–69%. For the four-component copolymers P(3HB/3GV/4HB/3HH), the degree of crystallinity is 30–41%. The values of М w for the copolymers P(3HB/DEG) are inhomogeneous and the polymers contain fractions uneven with respect to molecular mass: a high-molecular-mass polymer (М w from 2700 to 4900 kDa) and a low-molecular-mass polymer (М w = 46–167 kDa). For the copolymers P(3HB)/DEG and P(3HB/3HV/3H4MV), two peaks are observed in the region of melting with the gap between these peaks being 4–20°С. All of the types of copolymer samples, regardless of the monomer ratio, show an increase in elongation at break against the background of a decrease in tensile stress and Young’s modulus, with these effects being pronounced to different extents. On the whole, the properties of multicomponent polyhydroxyalkanoates differ appreciably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sudesh, H. Abe, and Y. Doi, Prog. Polym. Sci. 25, 1503 (2000).

    Article  CAS  Google Scholar 

  2. S. Chanprateep, J. Biosci. Bioeng. 110, 621 (2010).

    Article  CAS  Google Scholar 

  3. G.-Q. Chen, Industrial Production of PHA, Ed. by G.-Q. Chen and A. Steinbüchel (Springer-Verlag, Berlin; Heidelberg, 2010).

  4. T. G. Volova, E. I. Shishatskaya, and A. J. Sinskey, Degradable Polymers: Production, Properties and Applications (Nova Sci. Publ., New York, 2013).

    Google Scholar 

  5. M. Fernádez-Pérez, J. Environ. Sci. Health, Part B 42, 857 (2007).

    Article  Google Scholar 

  6. T. G. Volova, N. O. Zhila, O. N. Vinogradova, E. D. Nikolaeva, E. G. Kiselev, A. A. Shumilova, A. M. Shershneva, and E. I. Shishatskaya, J. Environ. Sci. Health, Part B 51, 113 (2016).

    Article  CAS  Google Scholar 

  7. T. G. Volova, N. O. Zhila, O. N. Vinogradova, A. A. Shumilova, S. V. Prudnikova, and E. I. Shishatskaya, Environ. Sci. Pollut. Res. 23, 5243 (2016). doi 10/007/s11256-015-5739-1

    Article  CAS  Google Scholar 

  8. A. Steinbüchel and H. E. Valentin, FEMS Microbiol. Lett. 128, 219 (1995).

    Article  Google Scholar 

  9. E. R. Olivera, M. Arcos, G. Naharro, and J. M. Luengo, Unusual PHA Biosynthesis, Ed. by G.-Q. Chen and A. Steinbüchel (Springer-Verlag, Berlin; Heidelberg, 2010).

  10. T. G. Volova, G. S. Kalacheva, and A. Steinbuchel, Macromol. Symp. 269, 1 (2008).

    Article  CAS  Google Scholar 

  11. T. G. Volova, N. O. Zhila, E. I. Shishatskaya, P. V. Mironov, A. D. Vasil’ev, A. G. Sukovatyi, and A. J. Sinskey, Polym. Sci., Ser. A 55 (7), 427 (2013).

    Article  CAS  Google Scholar 

  12. T. G. Volova and E. I. Shishatskaya, RF Patent No. 2439143 (2012).

    Google Scholar 

  13. L. Madden, A. J. Anderson, J. Asrar, and P. Garrett, Polymer 41, 3499 (2000).

    Article  CAS  Google Scholar 

  14. S. Chanprateep and S. Kulpreecha, J. Biosci. Bioeng. 101, 51 (2006).

    Article  CAS  Google Scholar 

  15. M. Koller, P. Hesse, R. Bona, C. Kutschera, A. Atlic, and G. Braunegg, Macromol. Symp. 253,33.

  16. T. M. F. Azira, A. A. Nursolehah, Y. Norhayati, M. I. A. Majid, and A. A. Amirul, World J. Microbiol. Biotechnol. 27, 2287 (2011).

    Article  Google Scholar 

  17. H. Ramachandran, N. Md. Iqbal, C. S. Sipaut, and A.-A. A. Abdullah, Appl. Biochem. Biotechnol. 164, 867 (2011).

    Article  CAS  Google Scholar 

  18. K. Bhubalan, W.-H. Lee, C.-Y. Loo, T. Yamamoto, T. Tsuge, Y. Doi, and K. Sudesh, Polym. Degrad. Stab. 93, 17 (2008).

    Article  CAS  Google Scholar 

  19. K. Bhubalan, D.-N. Rathi, H. Abe, T. Iwata, and K. Sudesh, Polym. Degrad. Stab. 95, 1436 (2010).

    Article  CAS  Google Scholar 

  20. W. Zhao and G.-Q. Chen, Process Biochem. 42, 1342 (2007).

    Article  CAS  Google Scholar 

  21. H.-F. Zhang, L. Ma, Z.-H. Wang, and G.-Q. Chen, Biotechnol. Bioeng. 104, 582 (2009).

    Article  CAS  Google Scholar 

  22. Y. Dai, Z. Yuan, K. Jack, and J. Keller, J. Biotechnol. 129, 489 (2007).

    Article  CAS  Google Scholar 

  23. N. Tanadchangsaeng, A. Kitagawa, T. Yamamoto, H. Abe, and T. Tsuge, Biomacromolecules 10, 2866 (2009).

    Article  CAS  Google Scholar 

  24. A. Saika, Y. Watanabe, K. Sudesh, H. Abe, and T. Tsuge, AMB Express 1, 1 (2011).

    Article  Google Scholar 

  25. W. P. Xie and G.-Q. Chen, Biochem. Eng. J. 38, 384 (2008).

    Article  CAS  Google Scholar 

  26. A. K. Singh and N. Mallick, Lett. Appl. Microbiol. 46, 350 (2008).

    Article  CAS  Google Scholar 

  27. P. R. Green, J. Kemper, L. Schechtman, L. Guo, M. Satkowski, S. Fiedler, A. Steinbüchel, and B. H. A. Rehm, Biomacromolecules 3, 208 (2002).

    Article  CAS  Google Scholar 

  28. A. Rathinasabapathy, B. A. Ramsay, J. A. Ramsay, and F. Perez-Guevara, J. Microbiol. Biotechnol. 30, 1409 (2014).

    Article  CAS  Google Scholar 

  29. Y. Dai, L. Lambert, Z. Yuan, and J. Keller, J. Biotechnol. 134, 137 (2008).

    Article  CAS  Google Scholar 

  30. L. J. R. Foster, Appl. Microbiol. Biotechnol. 75, 1241 (2007).

    Article  CAS  Google Scholar 

  31. V. Sanguanchaipaiwong, PhD Thesis (Univ. New South Wales, Sydney, 2007).

    Google Scholar 

  32. R. D. Ashby, F. Shi, and R. A. Gross, Biotechnol. Bioeng. 62, 106 (1999).

    Article  CAS  Google Scholar 

  33. V. Sanguanchaipaiwong, C. L. Gabelish, J. Hook, C. Scholz, and L. J. R. Foster, Biomacromolecules 5, 643 (2004).

    Article  CAS  Google Scholar 

  34. R. T. H. Chan, R. A. Russell, H. Marçal, T. H. Lee, P. J. Holden, and L. J. R. Foster, Biomacromolecules 15, 339 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Volova.

Additional information

Original Russian Text © T.G. Volova, O.N. Vinogradova, N.O. Zhila, E.G. Kiselev, I.V. Peterson, A.D. Vasil’ev, A.G. Sukovatyi, E.I. Shishatskaya, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2017, Vol. 59, No. 1, pp. 76–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volova, T.G., Vinogradova, O.N., Zhila, N.O. et al. Physicochemical properties of multicomponent polyhydroxyalkanoates: Novel aspects. Polym. Sci. Ser. A 59, 98–106 (2017). https://doi.org/10.1134/S0965545X17010163

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X17010163

Navigation