Skip to main content
Log in

Relaxation processes in an aromatic polyamide-imide and composites on its basis with hydrosilicate nanoparticles

  • Structure and Properties
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Features of the relaxation behavior of an aromatic polyamide-imide and a composite with nanotubes of magnesium silicate with the structure of chrysotile have been studied by dynamic mechanical analysis, dielectric spectroscopy, and differential scanning calorimetry. Two secondary relaxation (β1 and β2) transitions have been found, the activation energies of these processes have been determined, and the solvent effect on the cooperativeness degree has been studied. Changes in the value of the apparent activation energy of the β1-process caused by the subsequent heating of polymeric and composite samples have been analyzed according to the Starkweather procedure. It has been shown that, as the solvent is released from the polyamide-imide film, the polymer exhibits increasing local mobility, which are predetermined by the structure of the molecular unit. Using the GAMESS software, we have assumed the most probable dimer conformations that correspond to two repeating units of the polyamide-imide molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. K. Guchhait, A. Ray, J. Macromol. Sci., Chem. 20, 93 (1983).

    Article  Google Scholar 

  2. R. K. Agnihotri, Polym. Eng. Sci. 17, 366 (1977).

    Article  CAS  Google Scholar 

  3. F. W. Harris, US Patent No. 7074493 (2000).

  4. S.-J. Park, K. Y. Rhee, and F.-L. Jin, J. Phys. Chem. Solids. 78, 53 (2015).

    Article  CAS  Google Scholar 

  5. S. Diaham and M. L. Locatell, J. Phys. D: Appl. Phys 46 (18), 3 (2013).

    Article  Google Scholar 

  6. D. Fritsch, in Polymer Membranes for Gas and Vapor Separation (ACS, Washington, DC, 2006), Vol. 733, Chap. 16, p. 233.

    Google Scholar 

  7. E. L. Aleksandrova, M. Ya. Goikhman, L. A. Subbotina, N. N. Smirnov, A. N. Bursian, A. V. Yakimanskii, and V. V. Kudryavtsev, Semiconductors 40 (11), 1346 (2006).

    Article  CAS  Google Scholar 

  8. A. A. Kozyrev, I. D. Kosobudskii, D. A. Gorin, M. Ya. Goikhman, A. V. Yakimanskii, and L. I. Subbotina, Vestn. Saratov. Gos. Tekhnich. Univ. 2 (1), 61 (2011).

    Google Scholar 

  9. S. Habib, Am. J. Polym. Sci. 5 (2), 47 (2015).

    Google Scholar 

  10. V. A. Gusinskaya, M. M. Koton, T. V. Batrakova, and K. A. Romashkova, Vysokomol. Soedin., Ser. A. 18, 2681 (1976).

    CAS  Google Scholar 

  11. K. Y. Choi and M. H. Yi, Angew. Makromol. Chem. 222, 103 (1994).

    Article  CAS  Google Scholar 

  12. Y. Wang, T. S. Chung, H. Wang, and S. H. Goh, Chem. Eng. Sci. 64, 5198 (2009).

    Article  CAS  Google Scholar 

  13. S. V. Kononova, Yu. P. Kuznetsov, R. Apostel, D. Paul, and H. H. Schwarz, Angew. Makromol. Chem. 237, 45 (1996).

    Article  CAS  Google Scholar 

  14. S. V. Kononova, Y. P. Kuznetsov, K. A. Romashkova, and V. V. Kudryavtsev, Polym. Sci., Ser. A 48 (4), 967 (2006).

    Article  Google Scholar 

  15. S. V. Kononova, K. A. Romashkova, I. V. Gofman, R. V. Kremnev, E. V. Kruchinina, and V. M. Svetlichnyi, Russ. J. Appl. Chem. 82, 1033 (2009).

    Article  CAS  Google Scholar 

  16. S. V. Kononova, Y. P. Kuznetsov, T. E. Sukhanova, G. P. Belonovskaya, K. A. Romashkova, and L. D. Budovskaya, Polym. Sci., Ser. A 35 (2), 229 (1993).

    Google Scholar 

  17. S. V. Kononova, Y. P. Kuznetsov, A. V. Shchukarev, V. N. Ivanova, K. A. Romashkova, and V. V. Kudryavtsev, Russ. J. Appl. Chem. 76, 791 (2006).

    Article  Google Scholar 

  18. S. V. Kononova, E. N. Korytkova, K. A. Romashkova, Yu. P. Kuznetsov, I. V. Gofman, V. M. Svetlichnyi, and V. V. Gusarov, Russ. J. Appl. Chem. 80, 2142 (2007).

    Article  CAS  Google Scholar 

  19. S. V. Kononova, K. A. Romashkova, E. V. Kruchinina, V. V. Gusarov, I. L. Potokin, E. N. Korytkova, and T. P. Maslennikova, Russ. J. Gen. Chem. 80 (6), 1134 (2010).

    Article  Google Scholar 

  20. G. N. Gubanova, S. V. Kononova, M. E. Vylegzhanina, T. E. Sukhanova, F. I. Grigoriev, K. A. Romashkova, E.N. Korytkova, M. Cristea, D. Timpu, and V. Harabagiu, Russ. J. Appl. Chem. 83, 2175 (2010).

    Article  CAS  Google Scholar 

  21. C. L. Aitken, W. J. Koros, and D. R. Paul, Macromolecules 25, 3651 (1992).

    Article  CAS  Google Scholar 

  22. R. Khazaka, M. L. Locatelli, S. Diaham, P. Bidan, L. Dupuy, and G. Grosset, J. Phys. D: Appl. Phys. 46, 065501 (2013).

    Article  Google Scholar 

  23. S. Chisca, V. E. Musteata, I. Sava, and M. Bruma, Eur. Polym. J. 47, 1186 (2011).

    Article  CAS  Google Scholar 

  24. M. Kochi, C. Chen, R. Yokota, M. Hasegawa, and P. Hergenrother, High Perform. Polym. 17, 335 (2005).

    Article  CAS  Google Scholar 

  25. C. Bas, C. Tamagna, T. Passal, and N. D. Alberola, Polym. Eng. Sci. 43, 344 (2003).

    Article  CAS  Google Scholar 

  26. K. Bas, Macromol. Symp. 184, 193 (2002).

    Article  CAS  Google Scholar 

  27. S. Z. D. Cheng, T. M. Chalmers, Y. Gu, Y. Yoon, and F. W. Harris, Macromol. Chem. Phys. 196, 1439 (1995).

    Article  CAS  Google Scholar 

  28. A. Fukami, K. Iisaka, S. Kubota, and S. Etoh, J. Appl. Polym. Sci. 42, 3065 (1991).

    Article  CAS  Google Scholar 

  29. J. D. Jacobs, M. J. Arlen, D. H. Wang, Z. Ounaies, R. Berry, L. S. Tan, P. H. Garret, and R. Vaia, Polymer 51, 3139 (2010).

    Article  CAS  Google Scholar 

  30. S.-H. Huang, C.-C. Hu, K.-R. Lee, D.-J. Liaw, and J.-Y. Lai, Eur. Polym. J. 42, 140 (2006).

    Article  CAS  Google Scholar 

  31. X. Gao and F. Lu, J. Appl. Polym. Sci. 54, 1965 (1994).

    Article  CAS  Google Scholar 

  32. B. Redondo-Foj, N. Carsi, P. Ortiz-Serna, M. J. Sanchis, and F. Garsia, J. Phys. D: Appl. Phys. 46, 295 (2013).

    Article  Google Scholar 

  33. F. Kremer and A. Schonhals, Broadbrand Dielectric Spectroscopy (Springer, Berlin, 2003).

    Book  Google Scholar 

  34. S. Miyata, S. Sato, K. Nagai, T. Nakagava, and K. Kudo, J. Appl. Polym. Sci. 107, 3933 (2008).

    Article  CAS  Google Scholar 

  35. A. C. Comer, D. S. Kalika, B. W. Rowe, B. D. Freeman, and D. R. Paul, Polymer 50, 891 (2009).

    Article  CAS  Google Scholar 

  36. H. W. Starkweather, Macromolecules 14, 1277 (1981).

    Article  CAS  Google Scholar 

  37. R. Mahajan, W. J. Koros, and M. Thundyil, Membr. Technol. 1999 (105), 6 (1999).

    Article  Google Scholar 

  38. V. A. Bershtein and V. M. Egorov, Differential Scanning Calorimetry in Physics and Chemistry of Polymers (Khimiya, Leningrad, 1990).

    Google Scholar 

  39. E. N. Korytkova, A. V. Maslov, L. N. Pivovarova, I. A. Drozdova, and V.V. Gusarov, Glass Phys. Chem. 30 (1), 51 (2004).

    Article  CAS  Google Scholar 

  40. G. N. Gubanova, S. V. Kononova, S. V. Bronnikov, K. A. Romashkova, T. E. Sukhanova, E. N. Korytkova, D. Timpu, M. Cristea, and V. Harabagiu, J. Macromol. Sci. 53 (4), 555 (2014).

    Article  CAS  Google Scholar 

  41. Y. G. Baklagina, A. V. Sidorovich, I. Urban, Z. Pelzbauer, V. A. Gusinskaya, K. A. Romashkova, and T. V. Batrakova, Polym. Sci., Ser. B 31, 38 (1989).

    CAS  Google Scholar 

  42. C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization (Elzevier, Amsterdam, 1978), Vol. II, p. 225.

    Google Scholar 

  43. A. M. Zaichikov, Russ. J. Gen. Chem. 76 (4), 626 (2006).

    Article  CAS  Google Scholar 

  44. E. P. Bezuglaya, N. A. Lyapunov, A. P. Krasnoperova, G. D. Yukhno, and I. A. Chernyi, Vestn. Khar’kovskogo Nats. Univ., Vyp. Khim., No. 870, 199 (2009).

    CAS  Google Scholar 

  45. M. Usula, F. Mocci, F. Cesare Marincola, I. S. Porcedda, L. Gontrani, and R. Caminiti, J. Chem. Phys. 140, 124503 (2014).

    Article  CAS  Google Scholar 

  46. L. Gontrani and R. Caminiti, J. Chem. Phys. 136, 074505 (2012).

    Article  Google Scholar 

  47. G. V. Tarasova, A. E. Polotskii, T. I. Garmonova, V.S. Galenko, A. N. Cherkasov, M. M. Koton, V. A. Gusinskaya, T. V. Batrakova, and K. A. Romashkova, Vysokomol. Soedin., Ser. A. 21 (3), 541 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Afanas’eva.

Additional information

Original Russian Text © N.V. Afanas’eva, G.N. Gubanova, K.A. Romashkova, D.A. Sapegin, S.V. Kononova, 2016, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2016, Vol. 58, No. 6, pp. 639–651.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanas’eva, N.V., Gubanova, G.N., Romashkova, K.A. et al. Relaxation processes in an aromatic polyamide-imide and composites on its basis with hydrosilicate nanoparticles. Polym. Sci. Ser. A 58, 956–967 (2016). https://doi.org/10.1134/S0965545X16060018

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X16060018

Navigation