Skip to main content
Log in

Sorption of oxygen by glassy poly(ethyl methacrylate) at low temperatures

  • Transport in Polymers
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The solubility of molecular oxygen in glassy poly(ethyl methacrylate) at 160–308 K and a gas pressure from 50 kPa to 1.7 MPa is studied. The kinetics of desorption of O2 molecules from films in vacuum at 175 K is investigated at various initial gas concentrations in the glass. It is shown that the dependences of concentration of the dissolved oxygen on temperature and pressure may be described if the intermolecular cavities in the glass are regarded as sorption sites and if the presence of distributions over the energies of insertion of the molecules into these sites are assumed. The same values of sorption-site concentrations and insertionenergy dispersions make it possible to describe both the solubility of the gas and the dependence of the desorption kinetics of oxygen on its initial concentration in the glass. The concentration of sites does not change with temperature throughout the studied temperature range and amounts to ~3.5×1027 m–3. The function of the distribution over energies is likewise independent of temperature and the concentration of oxygen in the glass up to ~6.5×1026 m–3 (at 160 K). The dispersion of energies is ~3.9 kJ/mol. The temperature independence of the concentration of sites is explained by the fact that the sizes of cavities in the glass change very weakly at temperatures below the glass-transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.-H. Klopffer and B. Flaconneche, Oil Gas Sci. Technol. 56, 223 (2001).

    Article  CAS  Google Scholar 

  2. S. Neyertz and D. Brown, Macromolecules 42, 8521 (2009).

    Article  CAS  Google Scholar 

  3. D. R. Paul, Ber. Bunsen-Ges. Phys. Chem. 83, 294 (1979).

    Article  CAS  Google Scholar 

  4. J. H. Petropoulos, in Polymeric Gas Separation Membranes, Ed. by D. R. Paul and Y. P. Yampol’skii (CRC Press Boca Raton, 1994), p.17.

  5. M. Wessling, I. Huisman, T. van der Boomgaard, and C. A. Smolders, J. Polym. Sci., Part B: Polym. Phys. 33, 1371 (1995).

    Article  CAS  Google Scholar 

  6. O. Hölck, M. R. Siegert, M. Heuchel, and M. Böhning, Macromolecules 39, 9590 (2006).

    Article  Google Scholar 

  7. J. S. Chiou, J. W. Barlow, and D. R. Paul, J. Appl. Polym. Sci. 30, 2633 (1985).

    Article  CAS  Google Scholar 

  8. Y. Kamiya, K. Mizoguchi, Y. Naito, and T. Hirose, J. Polym. Sci., Part B: Polym. Phys. 24, 535 (1986).

    Article  CAS  Google Scholar 

  9. Y. Kamiya, K. Mizoguchi, T. Hirose, and Y. Naito, J. Polym. Sci., Part B: Polym. Phys. 27, 879 (1989).

    Article  CAS  Google Scholar 

  10. D. Raucher and M. D. Sefcik, ACS Symp. Ser. 223, 111 (1983).

    Article  CAS  Google Scholar 

  11. G. G. Lipscomb, AIChE J. 36 (10), 1505 (1990).

    Article  CAS  Google Scholar 

  12. J. S. Vrentas and C. M. Vrentas, Macromolecules 24, 2404 (1991).

    Article  CAS  Google Scholar 

  13. R. Kirchheim, Macromolecules 25, 6952 (1992).

    Article  CAS  Google Scholar 

  14. F. Doghieri and G. C. Sarti, Macromolecules 29, 7885 (1996).

    Article  CAS  Google Scholar 

  15. W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 19, 1655 (1981).

    Article  CAS  Google Scholar 

  16. Yu. P. Yampolskii, Russ. Chem. Rev. 76 (1), 59 (2007).

    Article  CAS  Google Scholar 

  17. G. Dlubek, V. Bondarenko, J. Pionteck, M. Supej, A. Wutzler, and R. Krause-Rehberg, Polymer 44 (6), 1921 (2003).

    Article  CAS  Google Scholar 

  18. J. Bohlen and R. Kirchheim, Macromolecules 34, 4210 (2001).

    Article  CAS  Google Scholar 

  19. D. N. Theodorou, in Diffusion in Polymers, Ed. by P. Neogi (Marcel Dekker, New York, 1996), p. 67.

  20. D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use (Wiley, New York, 1974).

    Google Scholar 

  21. H. Takeuchi, J. Chem. Phys. 93 (3), 2062 (1990).

    Article  CAS  Google Scholar 

  22. T. Kanaya, I. Tsukushi, K. Kaji, T. Sakaguchi, G. Kwak, and T. Masuda, Macromolecules 35, 5559 (2002).

    Article  CAS  Google Scholar 

  23. M. L. Greenfield and D. N. Theodorou, Macromolecules 31, 7068 (1998).

    Article  CAS  Google Scholar 

  24. J. Bohlen, J. Wolff, and R. Kirchheim, Macromolecules 32, 3766 (1999).

    Article  CAS  Google Scholar 

  25. C. Nagel, E. Schmidtke, K. Günther-Schade, D. Hofmann, D. Fritsch, T. Strunskus, and F. Faupel, Macromolecules 33, 2242 (2000).

    Article  CAS  Google Scholar 

  26. A. A. Gusev and U. W. Suter, Phys. Rev. A: At., Mol., Opt. Phys. 43 (12), 6488 (1991).

    Article  CAS  Google Scholar 

  27. D. W. van Krevelen and K. te Nijenhuis, Properties of Polymers (Elsevier, Amsterdam, 2009).

    Book  Google Scholar 

  28. A. A. Gusev, F. Müller-Plathe, W. F. van Gunsteren, and U. W. Suter, Adv. Polym. Sci. 116, 207 (1994).

    Article  CAS  Google Scholar 

  29. M. L. Greenfield, in Simulation Methods for Polymers, Ed. by M. Kotelyanskii and D. N. Theodorou (Marcel Dekker, New York, 2004), p.425.

  30. D. N. Theodorou, in Materials Science of Membranes for Gas and Vapor Separation, Ed. by Y. Yampolskii, I. Pinnau, and B. D. Freeman (Wiley, Chichester, 2006), p.49.

  31. H. Eslami, M. Kesik, H. A. Karimi-Varzaneh, and F. Müller-Plathe, J. Chem. Phys. 139, 124902 (2013).

    Article  Google Scholar 

  32. P. Gotthardt, A. Grüger, H. G. Brion, R. Plaetschke, and R. Kirchheim, Macromolecules 30, 8058 (1997).

    Article  CAS  Google Scholar 

  33. O. Hölck, M. Heuchel, M. Böhning, and D. Hofmann, J. Polym. Sci., Part B: Polym. Phys. 46, 59 (2008).

    Article  Google Scholar 

  34. A. Grüger, P. Gotthardt, M. Pönitsch, H. G. Brion, and R. Kirchheim, J. Polym. Sci., Part B: Polym. Phys. 36, 483 (1998).

    Article  Google Scholar 

  35. A. A. Gusev and U. W. Suter, J. Comput.-Aided Mater. Des. 1, 63 (1993).

    Article  CAS  Google Scholar 

  36. W. H. Wang, Prog. Mater. Sci. 57, 487 (2012).

    Article  CAS  Google Scholar 

  37. L. D. Landau and E. M. Lifshitz, Statistical Physics (Fizmatlit, Moscow, 2002), Vol. 1 [in Russian].

    Google Scholar 

  38. N. M. Bazhin, V. A. Ivanchenko, and V. N. Parmon, Thermodynamics for Chemists (Khimiya, KolosS, Moscow, 2004) [in Russian].

    Google Scholar 

  39. C. E. Holley, Jr., W. J. Worlton, and R. K. Zeigler, Los Alamos Sci. Lab., [Rep] LA, 2271 (1959).

    Google Scholar 

  40. S. Kanehashi and K. Nagai, J. Membr. Sci. 253 (1), 117 (2005).

    Article  CAS  Google Scholar 

  41. R. Kirchheim, Prog. Mater. Sci. 32 (4), 261 (1988).

    Article  CAS  Google Scholar 

  42. M. Pönitsch, P. Gotthardt, A. Grüger, H. G. Brion, and R. Kirchheim, J. Polym. Sci., Polym. Phys. Ed. 35 (15), 2397 (1997).

    Article  Google Scholar 

  43. M. Karimi, in Mass Transfer in Chemical Engineering Processes, Ed. by J. Markoš (InTech, Rijeka, Croatia, 2011), p.17.

  44. Y. Kamiya, K. Mizoguchi, Y. Naito, and D. Bourbon, J. Polym. Sci., Polym. Phys. Ed. 29 (2), 225 (1991).

    Article  CAS  Google Scholar 

  45. J. S. Chiou and D. R. Paul, J. Membr. Sci. 45 (1-2), 167 (1989).

    Article  CAS  Google Scholar 

  46. A. Bondi, Physical Properties of Molecular Crystals, Liquids and Glasses (Wiley, New York, 1968).

    Google Scholar 

  47. Y. Kamiya, Y. Naito, T. Hirose, and K. Mizoguchi, J. Polym. Sci., Polym. Phys. Ed. 28 (8), 1297 (1990).

    Article  CAS  Google Scholar 

  48. R. Kirchheim, J. Polym. Sci., Polym. Phys. Ed. 31 (10), 1373 (1993).

    Article  CAS  Google Scholar 

  49. R. M. Barrer, Trans. Faraday Soc. 43, 3 (1947).

    Article  CAS  Google Scholar 

  50. S. Matteucci, Y. Yampolskii, B. D. Freeman, and I. Pinnau, in Materials Science of Membranes for Gas and Vapor Separation, Ed. by Y. Yampolskii, I. Pinnau, and B. D. Freeman (Wiley, Chichester, 2006), p. 1.

  51. H. Mehrer, Diffusion in Solids (Springer, New York, 2007).

    Book  Google Scholar 

  52. Monte Carlo Methods in Statistical Physics, Ed. by K. Binder (Springer, Berlin, 1979).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Bol’shakov.

Additional information

Original Russian Text © B.V. Bol’shakov, V.M. Syutkin, 2016, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2016, Vol. 58, No. 2, pp. 188–198.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bol’shakov, B.V., Syutkin, V.M. Sorption of oxygen by glassy poly(ethyl methacrylate) at low temperatures. Polym. Sci. Ser. A 58, 265–275 (2016). https://doi.org/10.1134/S0965545X16020036

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X16020036

Keywords

Navigation