Skip to main content
Log in

Glass transition behavior of poly(trimethylene 2,6-naphthalate) in nanoclay confinement

  • Composites
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The glass transition behavior of poly(trimethylene 2,6-naphthalate) (PTN)/nanoclay composites was investigated using differential scanning calorimetry and dynamic mechanical analysis. The incorporation of two different types of nanoclays in the PTN matrix resulted in intercalation of the PTN chains in the narrow space of the clay intergalleries (d 001(clay)) and constrained the polymer chains in the vicinity of the nanoclay layers. Despite being in constrained regions, the glass transition temperature of the PTN/nanoclay composite was decreased as compared to neat PTN. Moreover, the characteristic length of the polymer chains (ξa) at T g was evaluated by employing the cooperatively rearranging region theory. The glass transition of the PTN chains depended on the correlation between ξa and the interlayer gallery distance (d 001(clay)). The decrease in T g of PTN/nanoclay composites is ascribed to the development of local free volume owing to the confining effect of the chain intercalation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Khan and B. A. Ahmed, Polym. Bull. 72, 1207 (2015).

    Article  CAS  Google Scholar 

  2. A. Usuki, N. Hasegawa, and M. Kato, Adv. Polym. Sci. 179, 135 (2005).

    Article  CAS  Google Scholar 

  3. D. Shah, P. Maiti, D. D. Jiang, C. A. Batt, E. P. Giannelis, Adv. Mater. 17, 525 (2005).

    Article  CAS  Google Scholar 

  4. T. D. Fornes, D. L. Hunter, and D. R. Paul, Macromolecules 37, 1793 (2004).

    Article  CAS  Google Scholar 

  5. M. Bousmina, Macromolecules 39, 4259 (2006).

    Article  CAS  Google Scholar 

  6. S. Bandi and D. A. Schiraldi, Macromolecules 39, 6537 (2006).

    Article  CAS  Google Scholar 

  7. Y. Rao and J. M. Pochan, Macromolecules 40, 290 (2007).

    Article  CAS  Google Scholar 

  8. H. Oh and P. F. Green, Nat. Mater. 8, 139 (2009).

    Article  CAS  Google Scholar 

  9. H. Lu and S. Nutt, Macromolecules 36, 4010 (2003).

    Article  CAS  Google Scholar 

  10. T. Tran, S. Said, and Y. Grohens, Macromolecules 38, 3867 (2005).

    Article  CAS  Google Scholar 

  11. A. N. Khan, P. D. Hong, and W. T. Chuang, J. Polym. Res. 20, 280 (2013).

    Article  Google Scholar 

  12. K. Chen, C. A. Wilkie, and S. Vyazovkin, J. Phys. Chem. B. 111, 12685 (2007).

    Article  CAS  Google Scholar 

  13. E. Donth, The Glass Transition, Relaxation Dynamics in Liquids and Disordered Materials (Springer, New York, 2001).

    Google Scholar 

  14. M. Bohning, H. Goering, A. Fritz, K. W. Brzezinka, G. Turky, A. Schonhals, Macromolecules 38, 2764 (2005).

    Article  Google Scholar 

  15. S. Srivastava and J. K. Basu, Phys. Rev. Lett. 98, 165701 (2007).

    Article  CAS  Google Scholar 

  16. Y. Li and H. Ishida, Macromolecules 38, 6513 (2005).

    Article  CAS  Google Scholar 

  17. B. J. Ash, R. W. Siegel, and L. S. Schadler, J. Polym. Sci., Part B: Polym. Phys. 42, 4371 (2004).

    Article  CAS  Google Scholar 

  18. K. M. Lee and C. D. Han, Polymer 44, 4573 (2003).

    Article  CAS  Google Scholar 

  19. X. H. Dai, J. Xu, X. L. Guo, Y. L. Lu, D. Y. Shen, N. Zhao, X. D. Luo, X. L. Zhang, Macromolecules 37, 5615 (2004).

    Article  CAS  Google Scholar 

  20. Z. S. Liu, S. Z. Erhan, and J. Y. Xu, Polymer 46, 10119 (2005).

    Article  CAS  Google Scholar 

  21. R. Krishnamoorti, R. A. Vaia, and E. P. Giannelis, Chem. Mater. 8, 1728 (1996).

    Article  CAS  Google Scholar 

  22. J. Park and S. C. Jana, Polymer 45, 7673 (2004).

    Article  CAS  Google Scholar 

  23. S. Vyazovkin and I. Dranca, J. Phys. Chem. B. 108, 11981 (2004).

    Article  CAS  Google Scholar 

  24. H. W. Chen, C. Y. Chiu, and F. C. Chang, J. Polym. Sci., Part B: Polym. Phys. 40, 1342 (2002).

    Article  CAS  Google Scholar 

  25. Y. G. Jeong, W. H. Jo, and S. C. Lee, Polymer 44, 3259 (2003).

    Article  CAS  Google Scholar 

  26. Y. Liang and H. S. Lee, Macromolecules 38, 9885 (2005).

    Article  CAS  Google Scholar 

  27. W. T. Chuang, P. D. Hong, C. H. Chen, H. S. Sheu, U. S. Jeng, J. Appl. Cryst. 40, 637 (2007).

    Article  Google Scholar 

  28. A. N. Khan, P. D. Hong, W. T. Chuang, and K. S. Shih, Mater. Chem. Phys. 119, 93 (2010).

    Article  CAS  Google Scholar 

  29. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  CAS  Google Scholar 

  30. E. Donth, J. Polym. Sci., Part B: Polym. Phys. 34, 2881 (1996).

    Article  CAS  Google Scholar 

  31. X. Zhang and L. S. Loo, J. Polym. Sci., Part B: Polym. Phys. 46, 2605 (2008).

    Article  CAS  Google Scholar 

  32. B. N. Jang, D. Wang, and C. A. Wilkie, Macromolecules 38, 6533 (2005).

    Article  CAS  Google Scholar 

  33. A. N. Khan, Physics of Polymer/Clay Nanocomposites (Lambert Academic Publishing, Saarbrueken, Germany, 2011).

    Google Scholar 

  34. A. N. Khan, P. D. Hong, W. T. Chuang, and K. S. Shih, Polymer 50, 6287 (2009).

    Article  CAS  Google Scholar 

  35. B. P. Grady, A. Paul, J. E. Peters, and W. T. Ford, Macromolecules 42, 6152 (2009).

    Article  CAS  Google Scholar 

  36. X. Zhang and L. S. Loo, Macromolecules 42, 5196 (2009).

    Article  CAS  Google Scholar 

  37. J. S. Shelley, P. T. Mather, and K. L. DeVries, Polymer 42, 5849 (2001).

    Article  CAS  Google Scholar 

  38. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, J. Appl. Polym. Sci. 49, 1259 (1993).

    Article  CAS  Google Scholar 

  39. H. R. Brown and T. P. Russell, Macromolecules 29, 798 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Nawaz Khan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.N., Hayder, A., Chaung, WT. et al. Glass transition behavior of poly(trimethylene 2,6-naphthalate) in nanoclay confinement. Polym. Sci. Ser. A 57, 874–882 (2015). https://doi.org/10.1134/S0965545X15060127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X15060127

Keywords

Navigation