Skip to main content
Log in

Permeability of hydrated poly(vinyl alcohol): Effect of relaxation behaviors and hydrogen bonds in supramolecular structure

  • Polymer Membranes
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The particular permeability of hydrated poly(vinyl alcohol) (PVA) was investigated from the point of polymeric relaxation behavior, and the more essential effect of hydrogen bonds in supramolecular structure was further analyzed as well. The permeability measurement showed that various hydrated PVA samples all had lower permeability to non-polar solvents, and the permeability was affected by relaxation state, which can be controlled by water content. Dynamic mechanical analysis measurements indicated that, in PVA with lower water content the relaxation motion benefiting permeation almost became frozen in glassy amorphous region, due to high activation energy of conformation transition, which then induced the slower permeation to occur. Solid-state 1H and 13C NMR spectra of hydrated PVA samples allowed to analyze the effect of hydrogen bonds. It was found that in PVA with lower water content conformation transition in amorphous region was restricted by more intermolecular and intramolecular hydrogen bonds, especially by the former. Also relatively added crystalline regions, which can affect permeability as physical cross-linking points, were mainly constructed by chain segments with no intramolecular hydrogen bonds. Above results suggest that intermolecular and intramolecular hydrogen bonds via conformation transition control relaxation behavior. Consequently, the relaxation behavior affects the permeability of hydrated PVA, in which water play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Karlsson, U. W. Gedde, and M. S. Hedenqvist, Polymer 45, 3893 (2004).

    Article  CAS  Google Scholar 

  2. I. Cozmuta, M. Blanco, and W. A. Goddard, J. Phys. Chem. B 111, 3151 (2007).

    Article  CAS  Google Scholar 

  3. J. Jang and D. K. Lee, Polymer 45, 1599 (2003).

    Article  Google Scholar 

  4. F. Peng, L. Lu, H. Sun, Y. Wang, H. Wu, and Z. Jiang, J. Membrane Sci. 275, 97 (2006).

    Article  CAS  Google Scholar 

  5. H. Matsuyama, M. Teramoto, and H. Urano, J. Membrane Sci. 126, 151 (1997).

    Article  CAS  Google Scholar 

  6. J. T. Yeh, L. H. Qang, K. N. Chen, and W. S. Jou, J. Mater. Sci. 36, 1891 (2001).

    Article  CAS  Google Scholar 

  7. C. Gagnard, Y. Germain, P. Keraudren, and B. Barriére, J. Appl. Polym. Sci. 92, 676 (2004).

    Article  CAS  Google Scholar 

  8. Polymer Permeability, Ed. by J. Comyn (Elsevier, New York, 1985})

  9. R. M. Hodge, T. J. Bastow, G. H. Edward, G. P. Simon, and A. J. Hill, Macromolecules 29, 8137 (1996).

    Article  CAS  Google Scholar 

  10. T. J. Bastow, R. M. Hodge, and A. J. Hill, J. Membrane Sci. 131, 207 (1997).

    Article  CAS  Google Scholar 

  11. T. Terao, S. Maeda, and A. Saika, Macromolecules 16, 1535 (1983).

    Article  CAS  Google Scholar 

  12. S. Lai, M. Casu, G. Saba, A. Lai, I. Husu, G. Masci, V. Crescenzi, G. Masci, and V. Crescenzi, Solid State Nucl. Magn. Reson. 21, 187 (2002).

    Article  CAS  Google Scholar 

  13. M. Kobayashi, M. Kanekiyo, I. Ando, and S. Amiya, Polymer Gels and Networks 6, 425 (1998).

    Article  CAS  Google Scholar 

  14. M. Kobayashi, I. Ando, T. Ishii, and S. Amiya, Macromolecules 28, 6677 (1995).

    Article  CAS  Google Scholar 

  15. M. Kobayashi, I. Ando, T. Ishii, and S. Amiya, J. Mol. Struct. 440, 155 (1998).

    Article  CAS  Google Scholar 

  16. R. Ricciardi, C. Gaillet, G. Ducouret, F. Lafuma, and F. Lauprétre, Polymer 44, 3375 (2003).

    Article  CAS  Google Scholar 

  17. F. Horii, S. Hu, K. Deguchi, H. Sugisawa, H. Ohgi, and T. Sato, Macromolecules 29, 3330 (1996).

    Article  CAS  Google Scholar 

  18. K. Masuda and F. Horri, Macromolecules 31, 5810 (1998).

    Article  CAS  Google Scholar 

  19. K. Masuda, H. Kaji, and F. Horri, Polym. J. 31, 105 (1999).

    Article  CAS  Google Scholar 

  20. K. Masuda, H. Kaji, and F. Horri, J. Polym. Sci. Pol. Phys. 38, 1 (2000).

    Article  CAS  Google Scholar 

  21. K. Masuda, H. Kaji, and F. Horri, Polym. J. 33, 190 (2001).

    Article  CAS  Google Scholar 

  22. K. Masuda, H. Kaji, and F. Horri, Polym. J. 33, 356 (2001).

    Article  CAS  Google Scholar 

  23. H. Ohgi, H. Yang, T. Sato, and F. Horii, Polymer 48, 3850 (2007).

    Article  CAS  Google Scholar 

  24. N. Chen, L. Li, and Q. Wang, Plast. Rubber Compos. 36, 284 (2007).

    Article  Google Scholar 

  25. Lange’s Handbook of Chemistry, Ed. by J. A. Dean, 15th ed. (McGraw-Hill, New York, 1999).

  26. Recommended Reference Materials for the Realization of Physicochemical Properties, Ed. by K. N. Marsh (Blackwell Scientific, Oxford, 1987})

  27. W. B. Li, F. Xue, and R. S. Cheng, Polymer 46, 12026 (2005).

    Article  CAS  Google Scholar 

  28. S. S. Wong, S. A. Altinkaya, and S. K. Mallapragada, Polymer 45, 5151 (2004).

    Article  CAS  Google Scholar 

  29. Hansen Solubility Parameters: a User’s Handbook, Ed. by C. M. Hansen, 2nd ed. Taylor & Francis, New York, 2007})

  30. Plastic Packaging Materials for Food, Eds. by O. G. Piringer and A. L. Baner (Wiley-Vch Verlag Gmbh, Malden, 2000})

  31. V. J. McBrierty, F. X. Quinn, C. Keely, A. C. Wilson, and G. D. Friends, Macromolecules 25, 4281 (1992).

    Article  CAS  Google Scholar 

  32. D. Capitani, G. Mensitieri, F. Porro, N. Proietti, and A. L. Segre, Polymer 44, 6589 (2003).

    Article  CAS  Google Scholar 

  33. J. M. Lagaron, A. K. Powell, and G. Bonner, Polym. Test 20, 569 (2001).

    Article  CAS  Google Scholar 

  34. A. T. Dibenedetto, J. Polym. Sci. A 1, 3459 (1963).

    CAS  Google Scholar 

  35. A. T. Dibenedetto, J. Polym. Sci. A 1, 3477 (1963).

    CAS  Google Scholar 

  36. J. S. Vrentas and J. L. Duta, J. Polym. Sci. Pol. Phys. 15, 403 (1977).

    Article  CAS  Google Scholar 

  37. L. Fritz and D. Hofmann, Polymer 38, 1035 (1997).

    Article  CAS  Google Scholar 

  38. Diffusion in Polymer, Ed. by P. Neogi (Marcel Dekker, New York, 1996})

  39. A. D. L. Rosa, L. Heux, and J. Y. Cavaillé, Polymer 41, 7547 (2000).

    Article  Google Scholar 

  40. Q. Yu, M. Zhou, Y. Ding, B. Jiang, and S. Zhu, Polymer 48, 7058 (2007).

    Article  CAS  Google Scholar 

  41. F. Horii, S. Hu, T. Ito, H. Odani, S. Matsuzawa, and K. Yamaura, Polymer 33, 2299 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Huang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Wang, J.H. Permeability of hydrated poly(vinyl alcohol): Effect of relaxation behaviors and hydrogen bonds in supramolecular structure. Polym. Sci. Ser. A 57, 656–666 (2015). https://doi.org/10.1134/S0965545X15050107

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X15050107

Keywords

Navigation