Skip to main content
Log in

Prediction of the compatibility of polymers and analysis of the microphase compositions and some properties of blends

  • Polymer Blends
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The calculation scheme for the prediction of polymer compatibility is proposed. The scheme is based on a criterion of polymer solubility in organic solvents that takes into account the chemical structuring of both the polymer and the solvent, surface forces, and the intermolecular-interaction energy between the polymer and the solvent. With the introduction of one polymer into another, one of them is considered a “solvent.” The cases of full compatibility of polymers, partial compatibility, and absolute incompatibility are analyzed. The dependences given for the glass-transition temperature on the compositions of some blends are in good agreement with the experimental data. The possibility to estimate the microphase compositions during microphase separation of the partially compatible polymers is shown. The influence of temperature, the molecular masses of polymers, and their architectures (degrees of branching) on compatibility is studied. It is found that the temperature weakly affects the compatibility of polymers in the glassy state. The effects of the molecular mass and, especially, the degree of branching are substantial. The calculation scheme is computerized, and it is a part of the computer program Cascade (INEOS RAS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polymer Blends. Formulation, Ed. by D. R. Pola and K. B. Bucknall (John Willey & Sons, Inc., New York, 2000), Vol. 1.

    Google Scholar 

  2. V. N. Kuleznev, Polymer Blends (Structure and Properties) (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  3. V. N. Kuleznev, Blends and Alloys of Polymers (NOT, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  4. K. S. Schweizer and J. G. Curro, Adv. Chem. Phys. 1, 98 (1997).

    Google Scholar 

  5. K. F. Freed and J. Dudowicz, Mod. Trends Polym. Sci. 3, 248 (1995).

    CAS  Google Scholar 

  6. K. F. Freed, J. Dudowicz, and K. W. Forman, J. Chem. Phys. 108, 7881 (1998).

    Article  CAS  Google Scholar 

  7. A. M. Kochnev, A. E. Zaikin, S. S. Galibeev, and V. P. Arkhireev, Polymer Physical Chemistry (Fen, Kazan, 2003) [in Russian].

    Google Scholar 

  8. Y. Wang, Q. Fu, and Y. Men, Polymer 45(1), 207 (2004).

    Article  CAS  Google Scholar 

  9. B. B. Wang, L. X. Wei, and G. S. Hu, J. Appl. Polym. Sci. 110, 1344 (2008).

    Article  CAS  Google Scholar 

  10. A. Retolaza, J. I. Eguiazabal, and J. Nazabal, Polym. Eng. Sci. 44(8), 1405 (2004).

    Article  CAS  Google Scholar 

  11. S. A. Madbouly, T. Chiba, T. Ougizawa, and T. Inoue, Polymer 42(4), 1743 (2001).

    Article  CAS  Google Scholar 

  12. L. D’Orazio and G. Cecchin, Polymer 42(6), 2675 (2001).

    Article  Google Scholar 

  13. A. A. Askadskii, Yu. I. Matveev, and M. S. Matevosyan, Vysokomol. Soedin., Ser. A 32(10), 2157 (1990).

    CAS  Google Scholar 

  14. Yu. I. Matveev and A. A. Askadskii, Vysokomol. Soedin., Ser. A 36(3), 436 (1994).

    CAS  Google Scholar 

  15. A. A. Askadskii, Physical Properties of Polymers. Prediction and Control (Gordon and Breach Publ., Amsterdam, 1996).

    Google Scholar 

  16. A. A. Askadskii, Computational Materials Science of Polymers (Cambridge Int. Sci. Publ., Cambridge, 2003).

    Google Scholar 

  17. A. A. Askadskii and V. I. Kondrashchenko, Computational Material Science of Polymers (Nauchnyi Mir, Moscow, 1999), Vol. 1 [in Russian].

    Google Scholar 

  18. A. A. Askadskii and A. R. Khokhlov, Introduction to Polymer Physical Chemistry (Nauchnyi Mir, Moscow, 2009) [in Russian].

    Google Scholar 

  19. A. A. Askadskii, Polym. Sci., Ser. A 54(11), 849 (2012).

    Article  CAS  Google Scholar 

  20. H. A. Schneider, J. Res. Natl. Inst. Stand. Technol. 102(2), 229 (1997).

    Article  CAS  Google Scholar 

  21. V. V. Korshak, S. V. Vinogradova, and S. N. Salazkin, Vysokomol. Soedin. 4(3), 339 (1962).

    CAS  Google Scholar 

  22. V. V. Korshak, S. V. Vinogradova, A. N. Baskakov, and P. M. Valetskii, Vysokomol. Soedin. 7(9), 1633 (1965).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Askadskii.

Additional information

Original Russian Text © A.A. Askadskii, T.A. Matseevich, M.N. Popova, V.I. Kondrashchenko, 2015, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2015, Vol. 57, No. 2, pp. 162–175.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askadskii, A.A., Matseevich, T.A., Popova, M.N. et al. Prediction of the compatibility of polymers and analysis of the microphase compositions and some properties of blends. Polym. Sci. Ser. A 57, 186–199 (2015). https://doi.org/10.1134/S0965545X15020029

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X15020029

Keywords

Navigation