Skip to main content
Log in

Dynamics of Silicon Sorption on the NiMo/Al2O3 Guard Bed Catalyst During Hydrotreating of Diesel

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The dynamics of the silicon sorption on the NiMo/Al2O3 guard-bed catalyst containing ~2.0 wt % Ni and ~6.0 wt % Mo during hydrotreating of diesel was studied. The catalyst bed was divided into five equal sections separated by perforated metal partitions permeable to the feed. Four series of experiments were performed; their time was varied in the range 48–200 h, and the temperature was 340°C. A diesel fraction containing ~1.0 wt % sulfur, 130 ppm nitrogen, and 200 ppm silicon introduced in the form of decamethylcyclopentasiloxane was used as the feed. The specific surface area of all the spent samples was 170–190 m2/g, the pore volume was 0.35– 0.43 cm3/g, and the average pore diameter was 8–9 nm. The sorption on a catalyst grain 2.5 mm in diameter is diffusion-controlled. The effective mass transfer coefficient and the catalyst capacity under the experimental conditions (5 wt %) were estimated using the equation describing the sorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kressmann, S., Morel, F., Harlé, V., and Kasztelan, S., Catal. Today, 1998, vol. 43, nos. 3–4, pp. 203–215. https://doi.org/10.1016/S0920-5861(98)00149-7

    Article  CAS  Google Scholar 

  2. Zeuthen, P., Schmidt, M.T., Rasmussen, H.W., and Moyse, B.M., NPRA Annu. Meet. Tech. Pap., 2010, vol. 2, August, pp. 818–833.

    Google Scholar 

  3. Rome, C. and Hueston, T., Compos. Int., 2002, no. 53, pp. 1–14.

    Google Scholar 

  4. Dubreuil, A.C., Chainet, F., de Sousa Bartolomeu, R.M., Marques Mota, F.M., Janvier, J., and Lienemann, C.P., C. R. Chim., 2017, vol. 20, no. 1, pp. 55–66. https://doi.org/10.1016/j.crci.2016.05.020

    Article  CAS  Google Scholar 

  5. Chainet, F., Le Meur, L., Lienemann, C.P., Ponthus, J., Courtiade, M., and Donard, O.F.X., Fuel, 2013, vol. 111, pp. 519–527. https://doi.org/10.1016/j.fuel.2013.03.046

    Article  CAS  Google Scholar 

  6. Chainet, F., Lienemann, C.P., Courtiade, M., Ponthus, J., and Xavier Donard, O.F., J. Anal. At. Spectrom., 2011, vol. 26, no. 1, pp. 30–51. https://doi.org/10.1039/c0ja00152j

    Article  CAS  Google Scholar 

  7. Sánchez, R., Todolí, J.L., Lienemann, C.P., and Mermet, J.M., J. Anal. At. Spectrom., 2012, vol. 27, no. 6, pp. 937–945. https://doi.org/10.1039/c2ja10336b

    Article  CAS  Google Scholar 

  8. Pohl, P., Vorapalawut, N., Bouyssiere, B., and Lobinski, R., J. Anal. At. Spectrom., 2010, vol. 25, no. 9, pp. 1461–1466. https://doi.org/10.1039/c005010e

    Article  CAS  Google Scholar 

  9. Pérez-Romo, P., Navarrete-Bolaños, J., AguilarBarrera, C., Angeles-Chavez, C., and Laredo, G.C., Appl. Catal. A: General, 2014, vol. 485, pp. 84–90. https://doi.org/10.1016/j.apcata.2014.07.038

    Article  CAS  Google Scholar 

  10. Kellberg, L., Zeuthen, P., and Jakobsen, H.J., J. Catal., 1993, vol. 143, no. 1, pp. 45–51. https://doi.org/10.1006/jcat.1993.1252

    Article  CAS  Google Scholar 

  11. Vaiss, V.S., Fonseca, C.G., Antunes, F.P.N., Chinelatto, L.S., Chiaro, S.S.X., Souza, W.F., and Leitão, A.A., J. Catal., 2020, vol. 389, pp. 578–591. https://doi.org/10.1016/j.jcat.2020.06.007

    Article  CAS  Google Scholar 

  12. Rana, M.S., Al Humaidan, F.S., Bouresli, R., and Navvamani, R., Mol. Catal., 2021, vol. 502, article 111375. https://doi.org/10.1016/j.mcat.2020.111375

  13. Nadeina, K.A., Kazakov, M.O., Kovalskaya, A.A., Danilova, I.G., Cherepanova, S.V., Danilevich, V.V., Gerasimov, E.Y., Prosvirin, I.P., Kondrashev, D.O., Kleimenov, A.V., Klimov, O.V., and Noskov, A.S., Catal. Today, 2020, vol. 353, pp. 53–62. https://doi.org/10.1016/j.cattod.2019.10.028

    Article  CAS  Google Scholar 

  14. Nadeina, K.A., Kazakov, M.O., Kovalskaya, A.A., Danilevich, V.V., Klimov, O.V., Danilova, I.G., Khabibulin, D.F., Gerasimov, E.Y., Prosvirin, I.P., Ushakov, V.A., Fedotov, K.V., Kondrashev, D.O., Kleimenov, A.V., and Noskov, A.S., Catal. Today, 2019, vol. 329, pp. 53–62. https://doi.org/10.1016/j.cattod.2018.11.075

    Article  CAS  Google Scholar 

  15. Pérez-Romo, P., Aguilar-Barrera, C., Navarrete-Bolaños, J., Rodríguez-Otal, L.M., Beltrán, F.H., and Fripiat, J., Appl. Catal. A: General, 2012, vol. 449, pp. 183–187. https://doi.org/10.1016/j.apcata.2012.10.001

    Article  CAS  Google Scholar 

  16. Danilevich, V.V., Klimov, O.V., Nadeina, K.A., Gerasimov, E.Y., Superlattices Microstruct., 2018, vol. 120, pp. 148–160. https://doi.org/10.1016/j.spmi.2018.05.025

    Article  CAS  ADS  Google Scholar 

  17. Mik, I.A., Klenov, O.P., Kazakov, M.O., Nadeina, K.A., Klimov, O.V., Reshetnikov, S.I., and Noskov, A.S., Katal. Promsti, 2023, vol. 23, pp. 70–79. https://doi.org/10.18412/1816-0387-2023-6-70-79

    Article  Google Scholar 

  18. Nam, S., Namkoong, W., Kang, J.H., Park, J.K., and Lee, N., Waste Manag., 2013, vol. 33, no. 10, pp. 2091– 2098. https://doi.org/10.1016/j.wasman.2013.03.024

    Article  CAS  PubMed  Google Scholar 

  19. Cabrera-Codony, A., Montes-Morán, M.A., SánchezPolo, M., Martín, M.J., and Gonzalez-Olmos, R., Environ. Sci. Technol., 2014, vol. 48, no. 12, pp. 7187–7195. https://doi.org/10.1021/es501274a

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Kam, E.K.T., Al-Shamali, M., Juraidan, M., Qabazard, H., Energy Fuels, 2005, vol. 19, no. 3, pp. 753–764. https://doi.org/10.1021/ef049843s

    Article  CAS  Google Scholar 

  21. Rodríguez, E., Félix, G., Ancheyta, J., and Trejo, F., Fuel, 2018, vol. 225, pp. 118–133. https://doi.org/10.1016/j.fuel.2018.02.085

    Article  CAS  Google Scholar 

  22. Reshetnikov, S., Kurzina, I., Livanova, A., Meshcheryakov, E., and Isupova, L., Materials (Basel), 2019, vol. 12, no. 24, article 4212. https://doi.org/10.3390/MA12244212

  23. Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Principles of Adsorption Technique), 1984, 2nd ed.

Download references

Funding

The study was financially supported by the Russian Science Foundation, project no. 23-19-00214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Golubev.

Ethics declarations

Noskov A.S. is a member of the Editorial Board of the Neftekhimiya/Petroleum Chemistry journal. The other authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, I.S., Dik, P.P., Petrov, R.V. et al. Dynamics of Silicon Sorption on the NiMo/Al2O3 Guard Bed Catalyst During Hydrotreating of Diesel. Pet. Chem. 63, 1203–1209 (2023). https://doi.org/10.1134/S0965544123090037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123090037

Keywords:

Navigation