Skip to main content
Log in

Optimization of Metal-Organic Framework MOF-5 Synthesis for Use in Cryo-Adsorption Hydrogen Storage

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Synthesis of MOF-5 at room temperature was optimized. The phase-pure crystalline structure with high hydrogen capacity was prepared at room temperature and atmospheric pressure. The MOF-5 pressing and subsequent fractionation singificantly improves its operation properties. An adsorption apparatus was designed and assembled to study the adsorption properties of the synthesized materials under the conditions close to the real one. Experiments on studying the adsorption properties of MOF-5 under the conditions of cryogenic hydrogen adsorption showed that the samples adsorbed up 3.3 wt % H2 at a 30 atm pressure and –196°С.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Niaz, S., Manzoor, T., and Pandith, A.H., Renew. Sustain. Energy Rev., 2015, vol. 50, pp. 457–469. https://doi.org/10.1016/j.rser.2015.05.011

    Article  CAS  Google Scholar 

  2. Peng, P., Anastasopoulou, A., Brooks, K., Furukawa, H., Bowden, M.E., Long, J.R., Autrey, T., and Breunig, H., Nat. Energy, 2022, vol. 7, no. 5, pp. 448–458. https://doi.org/10.1038/s41560-022-01013-w

    Article  Google Scholar 

  3. Anastasopoulou, A., Furukawa, H., Barnett, B.R., Jiang, H.Z.H., Long, J.R., and Breunig, H.M., Energy Environ. Sci., 2021, vol. 14, no. 3, pp. 1083–1094. https://doi.org/10.1039/D0EE02448A

    Article  CAS  Google Scholar 

  4. Abdin, Z., Tang, C., Liu, Y., and Catchpole, K., IScience, 2021, vol. 24, no. 9, article 102966. https://doi.org/10.1016/j.isci.2021.102966

  5. Carpetis, C., Int. J. Hydrogen Energy, 1982, vol. 7, no. 2, pp. 191–203. https://doi.org/10.1016/0360-3199(82)90146-X

    Article  Google Scholar 

  6. Rivard, E., Trudeau, M., and Zaghib, K., Materials, 2019, vol. 12, no. 12, article 1973. https://doi.org/10.3390/ma12121973

  7. Becherif, M., Ramadan, H.S., Cabaret, K., Picard, F., Simoncini, N., and Bethoux, O., Energy Procedia, 2015, vol. 74, pp. 371–380. https://doi.org/10.1016/j.egypro.2015.07.629

    Article  CAS  Google Scholar 

  8. Thornton, M. and Simpson, L., System Design, Analysis, and Modeling Activities Supporting the DOE Hydrogen Storage Engineering Center of Excellence (HSECoE): Final Project Report, 2019. https://doi.org/10.2172/1507683

  9. Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., and Heben, M.J., Nature, 1997, vol. 386, no. 6623, pp. 377–379. https://doi.org/10.1038/386377a0

    Article  CAS  Google Scholar 

  10. Chahine, R. and Bose, T.K., Int. J. Hydrogen Energy, 1994, vol. 19, no. 2, pp. 161–164. https://doi.org/10.1016/0360-3199(94)90121-X

    Article  CAS  Google Scholar 

  11. Chambers, A., Park, C., Baker, R.T.K., and Rodriguez, N.M., J. Phys. Chem. B, 1998, vol. 102, no. 22, pp. 4253–4256. https://doi.org/10.1021/jp980114l

    Article  CAS  Google Scholar 

  12. Pupysheva, O.V., Farajian, A.A., and Yakobson, B.I., Nano Lett., 2008, vol. 8, no. 3, pp. 767–774. https://doi.org/10.1021/nl071436g

    Article  CAS  PubMed  Google Scholar 

  13. Dong, J., Wang, X., Xu, H., Zhao, Q., and Li, J., Int. J. Hydrogen Energy, 2007, vol. 32, no. 18, pp. 4998–5004. https://doi.org/10.1016/j.ijhydene.2007.08.009

    Article  CAS  Google Scholar 

  14. Langmi, H.W., Book, D., Walton, A., Johnson, S.R., Al-Mamouri, M.M., Speight, J.D., Edwards, P.P., Harris, I.R., and Anderson, P.A., J. Alloys Compd., 2005, vols. 404–406, pp. 637–642. https://doi.org/10.1016/j.jallcom.2004.12.193

    Article  CAS  Google Scholar 

  15. Kohli, D.K., Khardekr, R.K., Singh, R., and Gupta, P.K., Int. J. Hydrogen Energy, 2008, vol. 33, no. 1, pp. 417–422. https://doi.org/10.1016/j.ijhydene.2007.07.044

    Article  CAS  Google Scholar 

  16. Qi, X., Gao, C., Zhang, Z., Chen, S., Li, B., and Wei, S., Int. J. Hydrogen Energy, 2012, vol. 37, no. 2, pp. 1518–1530. https://doi.org/10.1016/j.ijhydene.2011.10.034

    Article  CAS  Google Scholar 

  17. Sang, S.H., Furukawa, H., Yaghi, O.M., and Goddard, W.A., J. Am. Chem. Soc., 2008, vol. 130, no. 35, pp. 11580–11581. https://doi.org/10.1021/ja803247y

    Article  CAS  Google Scholar 

  18. Klontzas, E., Tylianakis, E., and Froudakis, G.E., Nano Lett., 2010, vol. 10, no. 2, pp. 452–454. https://doi.org/10.1021/nl903068a

    Article  CAS  PubMed  Google Scholar 

  19. Li, J., Cheng, S., Zhao, Q., Long, P., and Dong, J., Int. J. Hydrogen Energy, 2009, vol. 34, no. 3, pp. 1377–1382. https://doi.org/10.1016/j.ijhydene.2008.11.048

    Article  CAS  Google Scholar 

  20. Madden, D.G., O’Nolan, D., Rampal, N., Babu, R., Çamur, C., Al Shakhs, A.N., Zhang, S.Y., Rance, G.A., Perez, J., Casati, N.P.M., Cuadrado-Collados, C., O’Sullivan, D., Rice, N.P., Gennett, T., Parilla, P., Shulda, S., Hurst, K.E., Stavila, V., Allendorf, M.D., Silvestre-Albero, J., Forse, A.C., Champness, N.R., Chapman, K.W., and Fairen-Jimenez, D., J. Am. Chem. Soc., 2022, vol. 144, no. 30, pp. 13729–13739. https://doi.org/10.1021/jacs.2c04608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shet, S.P., Shanmuga Priya, S., Sudhakar, K., and Tahir, M., Int. J. Hydrogen Energy, 2021, vol. 46, no. 21, pp. 11782–11803. https://doi.org/10.1016/j.ijhydene.2021.01.020

    Article  CAS  Google Scholar 

  22. Suh, M.P., Park, H.J., Prasad, T.K., and Lim, D.W., Chem. Rev., 2012, vol. 112, no. 2, pp. 782–835. https://doi.org/10.1021/cr200274s

    Article  CAS  PubMed  Google Scholar 

  23. Furukawa, H., Cordova, K.E., O’Keeffe, M., and Yaghi, O.M., Science, 2013, vol. 341, no. 6149, article 1230444. DOI: 10.1126/science.1230444

  24. Li, H., Eddaoudi, M., O’Keeffe, M., and Yaghi, O.M., Nature, 1999, vol. 402, no. 6759, pp. 276–279. https://doi.org/10.1038/46248

    Article  CAS  Google Scholar 

  25. Murray, L.J., Dinc, M., and Long, J.R., Chem. Soc. Rev., 2009, vol. 38, no. 5, pp. 1294–1314. https://doi.org/10.1039/B802256A

    Article  CAS  PubMed  Google Scholar 

  26. Suresh, K., Aulakh, D., Purewal, J., Siegel, D.J., Veenstra, M., and Matzger, A.J., J. Am. Chem. Soc., 2021, vol. 143, no. 28, pp. 10727–10734. https://doi.org/10.1021/jacs.1c04926

    Article  CAS  PubMed  Google Scholar 

  27. Huang, L., Wang, H., Chen, J., Wang, Z., Sun, J., Zhao, D., and Yan, Y., Micropor. Mesopor. Mater., 2002, vol. 58, no. 2, pp. 105–114. https://doi.org/10.1016/S1387-1811(02)00609-1

    Article  Google Scholar 

Download references

Funding

Synthesis of the samples and their sorption tests were financially supported by the Russian Science Foundation (project no. 21-43-04406). The physicochemical parameters of the materials were studied within the framework of the government assignment, theme: Physical Chemistry of the Surface, Adsorption, and Catalysis.

Studies of the phase composition of the samples were financially supported by the Science and Universities National Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Nikiforov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforov, A.I., Kravchenko, V.D., Chesnokov, E.A. et al. Optimization of Metal-Organic Framework MOF-5 Synthesis for Use in Cryo-Adsorption Hydrogen Storage. Pet. Chem. 63, 805–813 (2023). https://doi.org/10.1134/S0965544123060257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123060257

Keywords:

Navigation