Skip to main content
Log in

A Double Perovskite Oxide with A-Site Deficiency: A Facile Way to Yield a Boosted Propane Combustion Catalyst

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Development of robust non-noble metal catalysts for combustive oxidation of volatile organic compounds (VOCs) at low temperatures is in high demand. A-site deficient perovskite catalysts synthesized by gel-combustion technique have been studied for the combustion of propane as a model for the abatement of hydrocarbon VOCs. Double perovskite oxides La2–xNiMnO6 with x = 0.0, 0.05, 0.1, and 0.15 have been prepared. As-prepared samples have been investigated within the temperature range of 200‒500°C and have shown an almost perfect selectivity to carbon dioxide. Certain levels of the A-site deficiency result in the development of more oxygen vacancies, improve oxygen mobility, and enhance the catalyst reducibility. However, an excessive A-site deficiency has been found to deteriorate the catalytic performance. The 72-h durability experiments on the most active sample, La2‒0.1NiMnO6 perovskite, demonstrate its good stability and H2O tolerance. Though the CO2 presence in a feed slightly altered the conversion of La2NiMnO6, and La2‒0.1NiMnO6 catalysts, a significant conversion change has been observed for the La2‒0.15NiMnO6 catalyst. Catalyst characterization techniques used in the study include XRD, BET, H2-TPR, O2-TPD, EPR, and ICP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S., and Hao, Z., Chem. Rev., 2019, vol. 119, pp. 4471‒4568. https://doi.org/10.1021/acs.chemrev.8b00408

    Article  CAS  PubMed  Google Scholar 

  2. Tomatis, M., Xu, H.-H., He, J., and Zhang, X.-D., J. Chem., 2016, p. 8324826. https://doi.org/10.1155/2016/8324826

  3. Zhang, Z., Jiang, Z., and Shangguan, W., Catal. Today, 2016, vol. 264, pp. 270‒278. https://doi.org/10.1016/j.cattod.2015.10.040

    Article  CAS  Google Scholar 

  4. Kamal, M.S., Razzak, S.A., and Hossain, M.M., Atmos. Environ., 2016, vol. 140, pp. 117‒134. https://doi.org/10.1016/j.atmosenv.2016.05.031

    Article  CAS  Google Scholar 

  5. Liu, W., Yang, S., Zhang, Q., He, T., Luo, Y., Tao, J., Wu, D., and Peng, H., Appl. Catal. B: Environ., 2021, vol. 292, p. 120171. https://doi.org/10.1016/j.apcatb.2021.120171

    Article  CAS  Google Scholar 

  6. Zang, M., Zhao, C., Wang, Y., and Chen, S., J. Saudi Chem. Soc., 2019, vol. 23, pp. 645‒654. https://doi.org/10.1016/j.jscs.2019.01.004

    Article  CAS  Google Scholar 

  7. Guo, Y., Wen, M., Li, G., and An, T., Appl. Catal. B: Environ., 2021, vol. 281, p. 119447. https://doi.org/10.1016/j.apcatb.2020.119447

    Article  CAS  Google Scholar 

  8. Wu, M., Sun, J., Xiang, W., and Chen, S., J. Environ. Chem. Eng., 2022, vol. 10, p. 108734. https://doi.org/10.1016/j.jece.2022.108734

    Article  CAS  Google Scholar 

  9. Li, X., Niu, Y., Su, H., and Qi, Y., Catal. Lett., 2022, vol. 152, pp. 1801‒1818. https://doi.org/10.1007/s10562-021-03770-x

    Article  CAS  Google Scholar 

  10. Ojala, S., Pitkäaho, S., Laitinen, T., Niskala Koivikko, N., Brahmi, R., Gaálová, J., Matejova, L., Kucherov, A., Päivärinta, S., Hirschmann, C., Nevanperä, T., Riihimäki, M., Pirilä, M., and Keiski, R.L., Top Catal., 2011, vol. 54, p. 1224. https://doi.org/10.1007/s11244-011-9747-1

    Article  CAS  Google Scholar 

  11. Li, G., Li, N., Sun, Y., Qu, Y., Jiang, Z., Zhao, Z., Zhang, Z., Cheng, J., and Hao, Z., Appl. Catal. B: Environ., 2021, vol. 282, p. 119512. https://doi.org/10.1016/j.apcatb.2020.119512

    Article  CAS  Google Scholar 

  12. Roozbahani, H., Maghsoodi, S., Raei, B., Kootenaei, A.S., and Azizi, Z., Korean J. Chem. Eng., 2022, vol. 39, pp. 586‒595. https://doi.org/10.1007/s11814-021-0930-1

    Article  CAS  Google Scholar 

  13. Liotta, L.F., Appl. Catal. B: Environ., 2010, vol. 100, pp. 403‒412. https://doi.org/10.1016/j.apcatb.2010.08.023

    Article  CAS  Google Scholar 

  14. Takeguchi, T., Aoyama, S., Ueda, J., Kikuchi, R., and Eguchi, K., Top Catal., 2003, vol. 23, pp. 159‒162. https://doi.org/10.1023/A:1024888724146

    Article  CAS  Google Scholar 

  15. Lin, D., Li, W., Feng, X., Chen, Y., Tao, X., Luo, Y., Xia, X., Huang, B., Qian, Q., and Chen, Q., Mol. Catal., 2021, vol. 499, p. 111315. https://doi.org/10.1016/j.mcat.2020.111315

    Article  CAS  Google Scholar 

  16. Wu, M., Li, H., Ma, S., Chen, S., and Xiang, W., Sci. Total Environ., 2021, vol. 795, p. 148904. https://doi.org/10.1016/j.scitotenv.2021.148904

    Article  CAS  PubMed  Google Scholar 

  17. Tasca, J.E., Lavat, A.E., and González, M.G., J. Asian Ceram. Soc., 2017, vol. 5, pp. 235‒241. https://doi.org/10.1016/j.jascer.2017.02.004

    Article  Google Scholar 

  18. Shadegan, H.R., Maghsoodi, S., Ghanavati, B., Kootenaei, A.S., and Azimi, A., React. Kinet. Mech. Catal., 2020, vol. 131, pp. 737‒752. https://doi.org/10.1007/s11144-020-01871-z

    Article  CAS  Google Scholar 

  19. Maghsoodi, S., Towfighi, J., Khodadadi, A., and Mortazavi, Y., J. Chem. Eng., 2013, vols. 215‒216, pp. 827‒837. https://doi.org/10.1016/j.cej.2012.11.005

    Article  CAS  Google Scholar 

  20. Shadegan, H.R., Maghsoodi, S., Ghanavati, B., Kootenaei, A.S., and Azimi, A., Iran. J. Catal., 2021, vol. 11, pp. 137‒147.

    CAS  Google Scholar 

  21. Hu, Z., Qiu, S., You, Y., Guo, Y., Guo, Y., Wang, L., Zhan, W., and Lu, G., Appl. Catal. B: Environ., 2018, vol. 225, pp. 110‒120. https://doi.org/10.1016/j.apcatb.2017.08.068

    Article  CAS  Google Scholar 

  22. Cheng, L., Liu, Z., Yuan, S., Wei, M., Hu, X., Zhang, B., and Jiang, Y., Chem. Pap., 2020, vol. 74, pp. 1449‒1457. https://doi.org/10.1007/s11696-019-00994-5

    Article  CAS  Google Scholar 

  23. Shao, Y., Wang, X.-F., Ao, M., Gong, C.-R., Fan, G.-L., and Chen, H.-F., Front. Mater. Sci., 2012, vol. 6, pp. 304‒310. https://doi.org/10.1007/s11706-012-0179-z

  24. Dai, L., Lu, X.-B., Chu, G.-H., He, C.-H., Zhan, W.-C., and Zhou, G.-J., Rare Met., 2021, vol. 40, pp. 555‒562. https://doi.org/10.1007/s12598-019-01360-w

    Article  CAS  Google Scholar 

  25. Zhou, B., Ke, Q., Wen, M., Ying, T., Cui, G., Zhou, Y., Gu, Z., and Lu, H., J. Rare Earths, 2022. https://doi.org/10.1016/j.jre.2022.05.007

  26. Hu, R., Bai, Y., Du, H., Zhang, H., Du, Y., Zhang, J., and Zhou, Q., J. Rare Earths, 2015, vol. 33, pp. 1284‒1292. https://doi.org/10.1016/S1002-0721(14)60558-5

    Article  CAS  Google Scholar 

  27. Moiseev, I.I., Loktev, A.S., Shlyakhtin, O.A., Mazo, G.N., and Dedov, A.G., Petrol. Chem., 2019, vol. 59, pp. S1‒S20. https://doi.org/10.1134/S0965544119130115

  28. Yang, L., Li, Y., Sun, Y., Wang, W., and Shao, Z., Energy Environ. Mater., 2022, vol. 5, pp. 751‒776. https://doi.org/10.1002/eem2.12256

    Article  CAS  Google Scholar 

  29. Zhu, J., Li, H., Zhong, L., Xiao, P., Xu, X., Yang, X., Zhao, Z., and Li, J., ACS Catal., 2014, vol. 4, pp. 2917‒2940. https://doi.org/10.1021/cs500606g

    Article  CAS  Google Scholar 

  30. Yang, Q., Liu, G., and Liu, Y., Ind. Eng. Chem. Res., 2018, vol. 57, pp. 1‒17. https://doi.org/10.1021/acs.iecr.7b03251

    Article  CAS  Google Scholar 

  31. Labhasetwar, N., Saravanan, G., Kumar Megarajan, S., Manwar, N., Khobragade, R., Doggali, P., and Grasset, F., Sci. Technol. Adv. Mater., 2015, vol. 16, p. 036002. https://doi.org/10.1088/1468-6996/16/3/036002

    Article  CAS  Google Scholar 

  32. Li, H., Yu, J., Gong, Y., Lin, N., Yang, Q., Zhang, X., and Wang, Y., Sep. Purif. Technol., 2023, vol. 307, p. 122716. https://doi.org/10.1016/j.seppur.2022.122716

    Article  CAS  Google Scholar 

  33. Liu, R., Wu, H., Shi, J., Xu, X., Zhao, D., Ng, Y.H., Zhang, M., Liu, S., and Ding, H., Catal. Sci. Technol., 2022, vol. 12, pp. 6945‒6991. https://doi.org/10.1039/D2CY01181F

    Article  CAS  Google Scholar 

  34. Vasala, S. and Karppinen, M., Prog. Solid State Chem., 2015, vol. 43, pp. 1‒36. https://doi.org/10.1016/j.progsolidstchem.2014.08.001

    Article  CAS  Google Scholar 

  35. Falcón, H., Barbero, J.A., Araujo, G., Casais, M.T., Martı́nez-Lope, M.J., Alonso, J.A., and Fierro, J.L.G., Appl. Catal. B: Environ., 2004, vol. 53, pp. 37‒45. https://doi.org/10.1016/j.apcatb.2004.05.004

    Article  CAS  Google Scholar 

  36. Pan, K.L., Pan, G.T., Chong, S., and Chang, M.B., J. Environ. Sci., 2018, vol. 69, pp. 205‒216. https://doi.org/10.1016/j.jes.2017.10.012

    Article  CAS  Google Scholar 

  37. Hu, R., Ding, R., Chen, J., Hu, J., and Zhang, Y., Catal. Commun., 2012, vol. 21, pp. 38‒41. https://doi.org/10.1016/j.catcom.2012.01.008

    Article  CAS  Google Scholar 

  38. Gao, X., Jin, Z., Hu, R., Hu, J., Bai, Y., Wang, P., Zhang, J., and Zhao, C., J. Rare Earths, 2021, vol. 39, pp. 398‒408. https://doi.org/10.1016/j.jre.2020.07.022

    Article  CAS  Google Scholar 

  39. Bangwal, A.S., Jha, P.K., Chauhan, M., Singh, S., Sinha, A.S.K., Jha, P.A., and Singh, P., Int. J. Hydrog. Energy, 2020, vol. 45, pp. 23378‒23390. https://doi.org/10.1016/j.ijhydene.2020.06.087

    Article  CAS  Google Scholar 

  40. Xu, X., Zhong, Y., and Shao, Z., Trends in Chemistry, 2019, vol. 1, pp. 410‒424. https://doi.org/10.1016/j.trechm.2019.05.006

    Article  CAS  Google Scholar 

  41. Ullmann, H., Trofimenko, N., Tietz, F., Stöver, D., and Ahmad-Khanlou, A., Solid State Ionics, 2000, vol. 138, pp. 79‒90. https://doi.org/10.1016/S0167-2738(00)00770-0

    Article  CAS  Google Scholar 

  42. Watanabe, R., Tsujioka, M., and Fukuhara, C., Catal. Lett., 2016, vol. 146, pp. 2458‒2467. https://doi.org/10.1007/s10562-016-1876-5

    Article  CAS  Google Scholar 

  43. Zhao, A., Ren, Y., Wang, H., and Qu, Z., J. Environ. Sci., 2023, vol. 127, pp. 811‒823. https://doi.org/10.1016/j.jes.2022.06.042

    Article  CAS  Google Scholar 

  44. Liu, F., Li, Z., Ma, H., and Gao, Z., Appl. Surf. Sci., 2015, vol. 351, pp. 709‒714. https://doi.org/10.1016/j.apsusc.2015.05.189

    Article  CAS  Google Scholar 

  45. Schön, A., Dujardin, C., Dacquin, J.-P., and Granger, P., Catal. Today, 2015, vol. 258, pp. 543‒548. https://doi.org/10.1016/j.cattod.2014.11.002

    Article  CAS  Google Scholar 

  46. Wu, M., Chen, S., and Xiang, W., J. Chem. Eng., 2020, vol. 387, p. 124101. https://doi.org/10.1016/j.cej.2020.124101

    Article  CAS  Google Scholar 

  47. Wu, Y., Chu, B., Zhang, M., Yi, Y., Dong, L., Fan, M., Jin, G., Zhang, L., and Li, B., Appl. Surf. Sci., 2019, vol. 481, pp. 1277‒1286. https://doi.org/10.1016/j.apsusc.2019.03.263

    Article  CAS  Google Scholar 

  48. Feng, C., Gao, Q., Xiong, G., Chen, Y., Pan, Y., Fei, Z., Li, Y., Lu, Y., Liu, C., and Liu, Y., Appl. Catal. B: Environ., 2022, vol. 304, p. 121005. https://doi.org/10.1016/j.apcatb.2021.121005

    Article  CAS  Google Scholar 

  49. Parvizi, N., Rahemi, N., Allahyari, S., and Tasbihi, M., J. Ind. Eng. Chem., 2020, vol. 84, pp. 167‒178. https://doi.org/10.1016/j.jiec.2019.12.031

    Article  CAS  Google Scholar 

  50. Lavat, A.E. and Baran, E.J., Vib. Spectrosc., 2003, vol. 32, pp. 167‒174. https://doi.org/10.1016/S0924-2031(03)00059-6

    Article  CAS  Google Scholar 

  51. Baran, E.J., Catal. Today, 1990, vol. 8, pp. 133‒151. https://doi.org/10.1016/0920-5861(90)87015-U

    Article  CAS  Google Scholar 

  52. de Azevedo Filho, J.B., Souza, R.F., Queiroz, J.C.A., Costa, T.H.C., Sena, C.P.S., Fonseca, S.G.C., da Silva, A.O., and Oliveira, J.B.L., J. Magn. Magn. Mater., 2021, vol. 527, p. 167770. https://doi.org/10.1016/j.jmmm.2021.167770

    Article  CAS  Google Scholar 

  53. Zhu, W., Chen, X., Li, C., Liu, Z., and Liang, C., J. Catal., 2021, vol. 396, pp. 179‒191. https://doi.org/10.1016/j.jcat.2021.02.014

    Article  CAS  Google Scholar 

  54. Merino, N.A., Barbero, B.P., Grange, P., and Cadús, L.E., J. Catal., 2005, vol. 231, pp. 232‒244. https://doi.org/10.1016/j.jcat.2005.01.003

    Article  CAS  Google Scholar 

  55. Hernández, W.Y., Tsampas, M.N., Zhao, C., Boreave, A., Bosselet, F., and Vernoux, P., Catal, Today, 2015, vol. 258, pp. 525‒534. https://doi.org/10.1016/j.cattod.2014.12.021

    Article  CAS  Google Scholar 

  56. Spinicci, R., Tofanari, A., Delmastro, A., Mazza, D., and Ronchetti, S., Mater. Chem. Phys., 2002, vol. 76, pp. 20‒25. https://doi.org/10.1016/S0254-0584(01)00498-9

    Article  CAS  Google Scholar 

  57. Wu, Y., Ni, X., Beaurain, A., Dujardin, C., and Granger, P., Appl. Catal. B: Environ., 2012, vol. 125, pp. 149‒157. https://doi.org/10.1016/j.apcatb.2012.05.033

    Article  CAS  Google Scholar 

  58. Machocki, A., Ioannides, T., Stasinska, B., Gac, W., Avgouropoulos, G., Delimaris, D., Grzegorczyk, W., and Pasieczna, S., J. Catal., 2004, vol. 227, pp. 282‒296. https://doi.org/10.1016/j.jcat.2004.07.022

    Article  CAS  Google Scholar 

  59. Liu, Y., Dai, H., Deng, J., Du, Y., Li, X., Zhao, Z., Wang, Y., Gao, B., Yang, H., and Guo, G., Appl. Catal. B: Environ., 2013, vols. 140‒141, pp. 493‒505. https://doi.org/10.1016/j.apcatb.2013.04.051

    Article  CAS  Google Scholar 

  60. Lima, S.M., Assaf, J.M., Peña, M.A., and Fierro, J.L.G., Appl. Catal. A: Gen., 2006, vol. 311, pp. 94‒104. https://doi.org/10.1016/j.apcata.2006.06.010

    Article  CAS  Google Scholar 

  61. Yang, E.-h. and Moon, D.J., RSC Adv., 2016, vol. 6, pp. 112885‒112898. https://doi.org/10.1039/C6RA22945J

    Article  CAS  Google Scholar 

  62. Yang, P., Yang, S., Shi, Z., Meng, Z., and Zhou, R., Appl. Catal. B: Environ., 2015, vol. 162, pp. 227‒235. https://doi.org/10.1016/j.apcatb.2014.06.048

    Article  CAS  Google Scholar 

  63. Xiao, Y., Zhu, W., Cai, G., Chen, M., Zheng, Y., Zhong, F., and Jiang, L., Phys. Chem. Chem. Phys., 2017, vol. 19, pp. 30418‒30428. https://doi.org/10.1039/C7CP06345H

    Article  CAS  PubMed  Google Scholar 

  64. Williams, O.C. and Sievers, C., Appl. Catal. A: Gen., 2021, vol. 614, p. 118057. https://doi.org/10.1016/j.apcata.2021.118057

    Article  CAS  Google Scholar 

  65. Wang, Y., Wu, J., Wang, G., Yang, D., Ishihara, T., and Guo, L., Appl. Catal. B: Environ., 2021, vol. 285, p. 119873. https://doi.org/10.1016/j.apcatb.2020.119873

    Article  CAS  Google Scholar 

  66. Yang, J., Hu, S., Shi, L., Hoang, S., Yang, W., Fang, Y., Liang, Z., Pan, C., Zhu, Y., Li, L., Wu, J., Hu, J., and Guo, Y., Environ. Sci. Technol., 2021, vol. 55, pp. 9243‒9254. https://doi.org/10.1021/acs.est.1c00511

    Article  CAS  PubMed  Google Scholar 

  67. Yang, J., Hu, S., Fang, Y., Hoang, S., Li, L., Yang, W., Liang, Z., Wu, J., Hu, J., Xiao, W., Pan, C., Luo, Z., Ding, J., Zhang, L., and Guo, Y., ACS Catal., 2019, vol. 9, pp. 9751‒9763. https://doi.org/10.1021/acscatal.9b02408

    Article  CAS  Google Scholar 

  68. Cho, J., Kim, M., Yang, I., Park, K., Rhee, C., Park, H., and Jung, J., J. Rare Earths, 2023, in press. https://doi.org/10.1016/j.jre.2023.01.002

  69. Varzaneh, A.Z., Towfighi, J., and Moghaddam, M.S., Petrol. Chem., 2020, vol. 60, pp. 204‒211. https://doi.org/10.1134/S0965544120020097

    Article  CAS  Google Scholar 

  70. Zhu, W., Chen, X., Liu, Z., and Liang, C., J. Phys. Chem. C, 2020, vol. 124, pp. 14646‒14657. https://doi.org/10.1021/acs.jpcc.0c03084

    Article  CAS  Google Scholar 

  71. Miranda, B., Díaz, E., Ordóñez, S., Vega, A., and Díez, F.V., Chemosphere, 2007, vol. 66, pp. 1706‒1715. https://doi.org/10.1016/j.chemosphere.2006.07.016

    Article  CAS  PubMed  Google Scholar 

  72. Chai, G., Zhang, W., Liotta, L.F., Li, M., Guo, Y., and Giroir-Fendler, A., Appl. Catal. B: Environ., 2021, vol. 298, p. 120606. https://doi.org/10.1016/j.apcatb.2021.120606

    Article  CAS  Google Scholar 

  73. Jian, Y., Tian, M., He, C., Xiong, J., Jiang, Z., Jin, H., Zheng, L., Albilali, R., and Shi, J.-W., Appl. Catal. B: Environ., 2021, vol. 283, p. 119657. https://doi.org/10.1016/j.apcatb.2020.119657

    Article  CAS  Google Scholar 

  74. Liu, Z., Cheng, L., Zeng, J., Hu, X., Zhangxue, S., Yuan, S., Bo, Q., Zhang, B., and Jiang, Y., J. Solid State Chem., 2020, vol. 292, p. 121712. https://doi.org/10.1016/j.jssc.2020.121712

    Article  CAS  Google Scholar 

  75. Wu, S., Liu, H., Huang, Z., Xu, H., and Shen, W., J. Chem. Eng., 2023, vol. 452, p. 139341. https://doi.org/10.1016/j.cej.2022.139341

    Article  CAS  Google Scholar 

Download references

Funding

We thank the Mahshahr Branch, Islamic Azad University, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Shahbazi Kootenaei.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradkhani, F., Kootenaei, A.S., Maghsoodi, S. et al. A Double Perovskite Oxide with A-Site Deficiency: A Facile Way to Yield a Boosted Propane Combustion Catalyst. Pet. Chem. 63, 1322–1334 (2023). https://doi.org/10.1134/S0965544123060014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123060014

Keywords:

Navigation