Skip to main content
Log in

Hydrogenation of Lignocellulosic Biomass-Derived Furfural over Ruthenium and Nickel Catalysts Supported on Mesoporous Aluminosilicate

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The paper describes synthesis of ruthenium and nickel catalysts supported on aluminum-modified SBA-15 (Santa Barbara Amorphous-15) mesoporous silicate, designated as Al-SBA-15, with a Si/Al ratio of 20. The catalysts were investigated in aqueous-phase hydrogenation of furfural, a valuable product obtained from lignocellulosic biomass. Elevating the reaction temperature from 200 to 250°C and the hydrogen pressure from 3 to 5 MPa enhanced the selectivity towards methyltetrahydrofuran (MTHF). The ruthenium catalyst outperformed its nickel counterpart in terms of activity in aqueous-phase furfural hydrogenation (250°C, 5 MPa H2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bonechi, C., Consumi, M., Donati, A., Leone, G., Magnani, A., Tamasi, G., and Rossi, C., Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen, Dalena, F., Basile, A., and Rossi, C., Eds., Sawston Cambridge: Woodhead Publishing, 2017, pp. 3–42. https://doi.org/10.1016/B978-0-08-101031-0.00001-6

  2. Khemthong, P., Yimsukanan, C., Narkkun, T., Srifa, A., Witoon, T., Pongchaiphol, S., Kiatphuengporn, S., and Faungnawakij, K., Biomass Bioenerg., 2021, vol. 148. ID 106033. https://doi.org/10.1016/j.biombioe.2021.106033

  3. Kashparova, V.P., Chernysheva, D.V., Klushin, V.A., Andreeva, V.E., Kravchenko, O.A., and Smirnova, N.V., Russ. Chem. Rev., 2021, vol. 90, no. 6, pp. 750–784. https://doi.org/10.1070/RCR5018

    Article  Google Scholar 

  4. Nishimura, S., Ikeda, N., and Ebitani, K., Catal. Today, 2014, vol. 232, pp. 89–98. https://doi.org/10.1016/j.cattod.2013.10.012

    Article  CAS  Google Scholar 

  5. Wang, Y., Zhao, D., Rodríguez-Padrón, D., and Len, C., Catalysts, 2019, vol. 9, no. 10. ID 796. https://doi.org/10.3390/catal9100796

  6. Liu, S., Govindarajan, N., and Chan, K., ACS Catal., 2022, vol. 12, pp. 12902–12910. https://doi.org/10.1021/acscatal.2c03822

    Article  CAS  Google Scholar 

  7. Yi, Z., Xu, H., Hu, D., and Yan, K., J. Alloys Compd., 2019, vol. 799, pp. 59–65. https://doi.org/10.1016/j.jallcom.2019.05.350

    Article  CAS  Google Scholar 

  8. García, A., Miguel P., J., Ventimiglia, A., Dimitratos, N., and Solsona, B., Fuel, 2022, vol. 324. ID 124549. https://doi.org/10.1016/j.fuel.2022.124549

  9. Gilkey, M.J., Panagiotopoulou, P., Mironenko, A.V., Jenness, G.R., Vlachos, D.G., and Xu, B., ACS Catal., 2015, vol. 5, pp. 3988–3994. https://doi.org/10.1021/acscatal.5b00586

    Article  CAS  Google Scholar 

  10. Wang, Z., Fu, Z., Lin, W., Li, S., and Song, W., Korean J. Chem. Eng., 2019, vol. 36, pp. 1235–1242. https://doi.org/10.1007/s11814-019-0305-z

    Article  CAS  Google Scholar 

  11. Lee, J., Woo, J., Nguyen-Huy, C., Lee, M.S., Joo, S.H., and An, K., Catal. Today, 2020, vol. 350, pp. 71–79. https://doi.org/10.1016/j.cattod.2019.06.032

    Article  CAS  Google Scholar 

  12. Akopyan, A., Polikarpova, P., Gul, O., Anisimov, A., and Karakhanov, E., Energy Fuel., 2020, vol. 34, pp. 14611–14619. https://doi.org/10.1021/acs.energyfuels.0c02008

    Article  CAS  Google Scholar 

  13. Huang, R., Cui, Q., Yuan, Q., Wu, H., Guan, Y., and Wu, P., ACS Sustainable Chem. Eng., 2018, vol. 6, pp. 6957–6964. https://doi.org/10.1021/acssuschemeng.8b00801

    Article  CAS  Google Scholar 

  14. Yang, Y., Ma, J., Jia, X., Du, Z., Duan, Y., and Xu, J., RSC Adv., 2016, vol. 6, pp. 51221–51228. https://doi.org/10.1039/C6RA05680F

    Article  CAS  Google Scholar 

  15. Thongratkaew, S., Luadthong, C., Kiatphuengporn, S., Khemthong, P., Hirunsit, P., and Faungnawakij, K., Catal. Today, 2021, vol. 367, pp. 177–188. https://doi.org/10.1016/j.cattod.2020.04.066

    Article  CAS  Google Scholar 

  16. Zhao, C. and Lercher, J.A., Angew. Chem. Int. Ed., 2012, vol. 51, pp. 5935–5940. https://doi.org/10.1002/anie.201108306

    Article  CAS  Google Scholar 

  17. Ma, R., Wu, X.-P., Tong, T., Shao, Z.-J., Wang, Y., Liu, X., Xia, Q., and Gong, X.-Q., ACS Catal., 2017, vol. 7, pp. 333–337. https://doi.org/10.1021/acscatal.6b02845

    Article  CAS  Google Scholar 

  18. Hronec, M., Fulajtárova, K., and Soták, T., Appl. Catal. B, 2014, vols. 154–155, pp. 294–300. https://doi.org/10.1016/j.apcatb.2014.02.029

    Article  CAS  Google Scholar 

  19. Maximov, A., Zolotukhina, A., Murzin, V., Karakhanov, E., and Rosenberg, E., ChemCatChem., 2015, vol. 7, pp. 1197–1210. https://doi.org/10.1002/cctc.201403054

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 22-79-10077, https://rscf.ru/project/22-79-10077).

Author information

Authors and Affiliations

Authors

Contributions

E.A. Karakhanov: conceptualization.

M.P. Boronoev: adaptation of catalyst synthesis method.

I.I. Shakirov: synthesis of catalysts.

Yu.S. Kardasheva: catalytic test.

S.V. Kardashev: physicochemical characterization of catalysts.

E.A. Roldugina: qualitative and quantitative analysis of reaction products.

A.L. Maximov: interpretation of catalysis results.

Corresponding author

Correspondence to E. A. Roldugina.

Ethics declarations

A.L. Maximov and E.A. Karakhanov, co-authors, are the Chief Editor and an Editorial Board member at the Nanogeterogennyi kataliz (Nanoheterogeneous Catalysis) Journal, respectively. The other co-authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roldugina, E.A., Boronoev, M.P., Shakirov, I.I. et al. Hydrogenation of Lignocellulosic Biomass-Derived Furfural over Ruthenium and Nickel Catalysts Supported on Mesoporous Aluminosilicate. Pet. Chem. 63, 655–662 (2023). https://doi.org/10.1134/S0965544123040072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123040072

Keywords:

Navigation