Skip to main content
Log in

Butadiene Synthesis from Formaldehyde and Propylene on Mesoporous Metal Phosphates

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

One-step gas-phase synthesis of butadiene from formaldehyde and propylene on aluminum (AlP), zirconium (ZrP), and niobium (NbP) phosphates with the pore volumes of 0.51, 0.25, and 0.19 cm3/g, respectively, was studied for the first time. The physicochemical properties of the catalysts were studied by X-ray fluorescence analysis, low-temperature nitrogen adsorption, X-ray diffraction analysis, scanning electron microscopy, temperature-programmed NH3 desorption, IR spectroscopy of adsorbed pyridine, and 31Р MAS NMR. Evaluation of the catalytic properties of the phosphates showed that they can be ranked in the following order with respect to the formaldehyde conversion and target product (butadiene) formation selectivity: AlP < ZrP < NbP, which correlates with metal electronegativity series. The СН2О conversion on the most active NbP was 4.5%, and the molar selectivity of the butadiene formation was 45.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. White, Wm.C., Chem.-Biol. Interact., 2007, vol. 166, pp. 10–14. https://doi.org/10.1016/j.cbi.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  2. Liakumovich, A.G., Akhmed’yanova, R.A., Bogacheva, T.M., and Golovanova, K.V., Vestn. Kazansk. Tekhnol. Univ., 2013, vol. 16, no. 18, pp. 115–118.

    Google Scholar 

  3. Nazarov, A.A., Yulbarisov, D.F., and Ponikarov, S.I., Vestn. Kazansk. Tekhnol. Univ., 2013, no. 3, pp. 93–98.

    Google Scholar 

  4. Samsudin, I.B., Zhang, H., Jaenicke, S., and Chuah, G.-K., Chem. Asian J., 2020, pp. 1–18. https://doi.org/10.1002/asia.202001023

  5. Bedenko, S.P., Dement’ev, K.I., Tret’yakov, V.F., and Maksimov, A.L., Petrol. Chem., 2020, vol. 60, no. 7, pp. 723–730. https://doi.org/10.1134/S0965544120070026

    Article  CAS  Google Scholar 

  6. Pomalaza, G., Ponton, P.A., Capron, M., and Dumeignil, F., Catal. Sci. Technol., 2020, vol. 10, pp. 4860–4911. https://doi.org/10.1039/d0cy00784f

    Article  CAS  Google Scholar 

  7. Rodgers, S., Meng, F., Poulston, S., Conradie, A., and McKechnie, J., J. Clean. Prod., 2022, vol. 364, article 132614. https://doi.org/10.1016/j.jclepro.2022.132614

  8. Liakumovich, A.G., Akhmed’yanova, R.A., Bogacheva, T.M., Miloslavskii, D.G., Yunusova, L.M., and Golovanova, K.V., Patent RU 2561734, 2015.

  9. Kots, P.A., Artsiusheuski, M.A., Grigoriev, Y.V., and Ivanova, I.I., ACS Catal., 2020, vol. 10, pp. 15149−15161. https://doi.org/10.1021/acscatal.0c03282

    Article  CAS  Google Scholar 

  10. Kots, P.A., Artyushevskii, N.A., and Ivanova, I.I., Patent RU 2688158, 2019.

  11. Ponomareva, O.A., Matveeva, O.D., Nikiforov, A.I., Dobryakova, I.V., Kasyanov, I.A., Shkuropatov, A.V., and Ivanova, I.I., Petrol. Chem., 2021, vol. 61, no. 8, pp. 916–924. https://doi.org/10.1134/S0965544121080120

    Article  CAS  Google Scholar 

  12. Khadzhiev, S.N., Maksimov, A.L., Tret’yakov, V.F., Talyshinskii, R.M., and Ilolov, A.M., Petrol. Chem., 2018, vol. 58, no. 8, pp. 613–621. https://doi.org/10.1134/S096554411808011X

    Article  CAS  Google Scholar 

  13. Makshina, E.V., Dusselier, M., Janssens, W., Degrève, J., Jacobs, P.A., and Sels, B.F., Chem. Soc. Rev., 2014, vol. 43, pp. 7917–7953. https://doi.org/10.1039/c4cs00105b

    Article  CAS  PubMed  Google Scholar 

  14. Zacharopoulou, V. and Lemonidou, A.A., Catalysts, 2018, vol. 8, pp. 2–19. https://doi.org/10.3390/catal8010002

    Article  CAS  Google Scholar 

  15. Catrinck, M.N., Campisi, S., Carniti, P., Teófilo, R.F., Bossola, F., and Gervasini, A., Catalysts, 2021, vol. 11, article 1077. https://doi.org/10.3390/catal11091077

  16. Shivhare, A., Kumar, A., and Srivastava, R., Green Chem., 2021, vol. 23, pp. 3818–3841. https://doi.org/10.1039/d1gc00376c

    Article  CAS  Google Scholar 

  17. Sushkevich, V.L., Ordomsky, V.V., and Ivanova, I.I., Appl. Catal. A: General, 2012, vols. 441–442, pp. 21–29. https://doi.org/10.1016/j.apcata.2012.06.034

    Article  CAS  Google Scholar 

  18. Ai, M., J. Catal., 1987, vol. 106, pp. 280–286.

    Article  CAS  Google Scholar 

  19. Okazaki, S. and Kurosaki, A., Catal. Today, 1990, vol. 8, pp. 113–122.

    Article  CAS  Google Scholar 

  20. Hutchings, G.J., Hudson, I.D., Bethell, D., and Timms, D.G., J. Catal., 1999, vol. 188, pp. 291–299.

    Article  CAS  Google Scholar 

  21. Alvaro, V.F.D. and Johnstone, R.A.W., J. Mol. Catal. A: Chemical, 2008, vol. 280, pp. 131–141. https://doi.org/10.1016/j.molcata.2007.10.031

    Article  CAS  Google Scholar 

  22. Sun, Y., Afanasiev, P., Vrinat, M., and Coudurier, G., J. Mater. Chem., 2000, vol. 10, no. 10, pp. 2320–2324. https://doi.org/10.1039/B004845N

    Article  CAS  Google Scholar 

  23. Weingarten, R., Kim, Y.T., Tompsett, G.A., Fernández, A., Han, K.S., Hagaman, E.W., Conner, W.C.Jr., Dumesic, J.A., and Huber, J.W., J. Catal., 2013, vol. 304, pp. 123–134. https://doi.org/10.1016/j.jcat.2013.03.023

    Article  CAS  Google Scholar 

  24. Segawa, K., Kurusu, Y., Nakajima, Y., and Kinoshita, M., J. Catal., 1985, vol. 94, no. 2, pp. 491–500. https://doi.org/10.1016/0021-9517(85)90213-1

    Article  CAS  Google Scholar 

  25. Segawa, K., Nakajima, Y., Nakata, S., Asaoka, S., and Takahashi, H., J. Catal., 1986, vol. 101, no. 1, pp. 81–89. https://doi.org/10.1016/0021-9517(86)90231-9

    Article  CAS  Google Scholar 

  26. Nakayama, H., Eguchi, T., Nakamura, N., Yamaguchi, S., Danjyo, M., and Tsuhako, M., J. Mater. Chem., 1997, vol. 7, no. 6, pp. 1063–1066. https://doi.org/10.1039/A607807I

    Article  CAS  Google Scholar 

  27. Zhu, J. and Huang, Y., Inorg. Chem., 2009, vol. 48, no. 21, pp. 10186–10192. https://doi.org/10.1021/ic9011668

    Article  CAS  PubMed  Google Scholar 

  28. Reis, M.C., Barros, S.D.T., Lachter, E.R., San Gil, R.A.S., Flores, J.H., Catal. Today, 2012, vol. 192, no. 1, pp. 117–122. https://doi.org/10.1016/j.cattod.2012.05.025

    Article  CAS  Google Scholar 

  29. Toshihid, H., Do, D.D., and Nicholson, D., Adv. Colloid Interface Sci., 2011, vol. 169, pp. 40–58. https://doi.org/10.1016/j.cis.2011.08.003

    Article  CAS  Google Scholar 

  30. Tamura, M., Shimizu, K., and Satsuma, A., Appl. Catal. A, 2012, vols. 433–434, pp. 135–145. https://doi.org/10.1016/j.apcata.2012.05.008

    Article  CAS  Google Scholar 

  31. Catrinck, M.N., Ribeiro, E.S., Monteiro, R.S., Ribas, R.M., Barbos, M.H.P., and Teófilo, R.F., Fuel, 2017, vol. 210, pp. 67–74. https://doi.org/10.1016/j.fuel.2017.08.035

    Article  CAS  Google Scholar 

Download references

Funding

Studies on the synthesis and MAS NMR analysis of the samples were financially supported by the Russian Science Foundation (project no. 20-13-00203). The acid properties were studied within the framework of the government assignment “Physical Chemistry of Surface, Adsorption, and Catalysis.” The phase composition of the samples was studied within the framework of the federal project “Development of the Infrastructure for Scientific Research and Training,” Science and Universities National Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Ponomareva.

Ethics declarations

Ivanova I.I. is the Editor-in-Chief of Sovremennye Molekulyarnye Sita. Advanced Molecular Sieves Journal. The other authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, O.A., Dobryakova, I.V., Kostyukov, I.A. et al. Butadiene Synthesis from Formaldehyde and Propylene on Mesoporous Metal Phosphates. Pet. Chem. 63, 769–777 (2023). https://doi.org/10.1134/S0965544123030088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123030088

Keywords:

Navigation